In
mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, Hilbert's syzygy theorem is one of the three fundamental theorems about
polynomial ring
In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring formed from the set of polynomials in one or more indeterminates (traditionally also called variables) with coefficients in another ring, ...
s over
fields
Fields may refer to:
Music
*Fields (band), an indie rock band formed in 2006
* Fields (progressive rock band), a progressive rock band formed in 1971
* ''Fields'' (album), an LP by Swedish-based indie rock band Junip (2010)
* "Fields", a song by ...
, first proved by
David Hilbert
David Hilbert (; ; 23 January 1862 – 14 February 1943) was a German mathematician and philosopher of mathematics and one of the most influential mathematicians of his time.
Hilbert discovered and developed a broad range of fundamental idea ...
in 1890, that were introduced for solving important open questions in
invariant theory
Invariant theory is a branch of abstract algebra dealing with actions of groups on algebraic varieties, such as vector spaces, from the point of view of their effect on functions. Classically, the theory dealt with the question of explicit descr ...
, and are at the basis of modern
algebraic geometry
Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; th ...
. The two other theorems are
Hilbert's basis theorem
In mathematics Hilbert's basis theorem asserts that every ideal (ring theory), ideal of a polynomial ring over a field (mathematics), field has a finite generating set of an ideal, generating set (a finite ''basis'' in Hilbert's terminology).
In ...
, which asserts that all
ideals of polynomial rings over a field are
finitely generated, and
Hilbert's Nullstellensatz
In mathematics, Hilbert's Nullstellensatz (German for "theorem of zeros", or more literally, "zero-locus-theorem") is a theorem that establishes a fundamental relationship between geometry and algebra. This relationship is the basis of algebraic ge ...
, which establishes a bijective correspondence between
affine algebraic varieties and
prime ideal
In algebra, a prime ideal is a subset of a ring (mathematics), ring that shares many important properties of a prime number in the ring of Integer#Algebraic properties, integers. The prime ideals for the integers are the sets that contain all th ...
s of polynomial rings.
Hilbert's syzygy theorem concerns the ''relations'', or
syzygies in Hilbert's terminology, between the
generators of an
ideal, or, more generally, a
module. As the relations form a module, one may consider the relations between the relations; the theorem asserts that, if one continues in this way, starting with a module over a polynomial ring in indeterminates over a field, one eventually finds a
zero module of relations, after at most steps.
Hilbert's syzygy theorem is now considered to be an early result of
homological algebra
Homological algebra is the branch of mathematics that studies homology (mathematics), homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology (a precurs ...
. It is the starting point of the use of homological methods in
commutative algebra
Commutative algebra, first known as ideal theory, is the branch of algebra that studies commutative rings, their ideal (ring theory), ideals, and module (mathematics), modules over such rings. Both algebraic geometry and algebraic number theo ...
and algebraic geometry.
History
The syzygy theorem first appeared in Hilbert's seminal paper "Über die Theorie der algebraischen Formen" (1890). The paper is split into five parts: part I proves Hilbert's basis theorem over a field, while part II proves it over the integers. Part III contains the syzygy theorem (Theorem III), which is used in part IV to discuss the
Hilbert polynomial
In commutative algebra, the Hilbert function, the Hilbert polynomial, and the Hilbert series of a graded commutative algebra finitely generated over a field are three strongly related notions which measure the growth of the dimension of the homog ...
. The last part, part V, proves finite generation of certain
rings of invariants. Incidentally part III also contains a special case of the
Hilbert–Burch theorem
In mathematics, the Hilbert–Burch theorem describes the structure of some free resolutions of a quotient of a local or graded ring in the case that the quotient has projective dimension 2. proved a version of this theorem for polynomial ...
.
Syzygies (relations)
Originally, Hilbert defined syzygies for
ideals in
polynomial ring
In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring formed from the set of polynomials in one or more indeterminates (traditionally also called variables) with coefficients in another ring, ...
s, but the concept generalizes trivially to (left)
modules over any
ring
(The) Ring(s) may refer to:
* Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry
* To make a sound with a bell, and the sound made by a bell
Arts, entertainment, and media Film and TV
* ''The Ring'' (franchise), a ...
.
Given a
generating set
In mathematics and physics, the term generator or generating set may refer to any of a number of related concepts. The underlying concept in each case is that of a smaller set of objects, together with a set of operations that can be applied to ...
of a module over a ring , a relation or first syzygy between the generators is a -tuple
of elements of such that
:
Let
be a
free module
In mathematics, a free module is a module that has a ''basis'', that is, a generating set that is linearly independent. Every vector space is a free module, but, if the ring of the coefficients is not a division ring (not a field in the commu ...
with basis
The -
tuple
In mathematics, a tuple is a finite sequence or ''ordered list'' of numbers or, more generally, mathematical objects, which are called the ''elements'' of the tuple. An -tuple is a tuple of elements, where is a non-negative integer. There is o ...
may be identified with the element
:
and the relations form the
kernel of the
linear map
In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V \to W between two vector spaces that p ...
defined by
In other words, one has an
exact sequence
In mathematics, an exact sequence is a sequence of morphisms between objects (for example, groups, rings, modules, and, more generally, objects of an abelian category) such that the image of one morphism equals the kernel of the next.
Definit ...
:
This first syzygy module
depends on the choice of a generating set, but, if
is the module that is obtained with another generating set, there exist two free modules
and
such that
:
where
denote the
direct sum of modules
In abstract algebra, the direct sum is a construction which combines several modules into a new, larger module. The direct sum of modules is the smallest module which contains the given modules as submodules with no "unnecessary" constraints, m ...
.
The ''second syzygy'' module is the module of the relations between generators of the first syzygy module. By continuing in this way, one may define the ''th syzygy module'' for every positive integer .
If the th syzygy module is free for some , then by taking a basis as a generating set, the next syzygy module (and every subsequent one) is the
zero module. If one does not take a basis as a generating set, then all subsequent syzygy modules are free.
Let be the smallest integer, if any, such that the th syzygy module of a module is free or
projective. The above property of invariance, up to the sum direct with free modules, implies that does not depend on the choice of generating sets. The
projective dimension
In mathematics, particularly in algebra, the class of projective modules enlarges the class of free modules (that is, modules with basis vectors) over a ring, keeping some of the main properties of free modules. Various equivalent characterizatio ...
of is this integer, if it exists, or if not. This is equivalent with the existence of an exact sequence
:
where the modules
are free and
is projective. It can be shown that one may always choose the generating sets for
being free, that is for the above exact sequence to be a
free resolution
In mathematics, and more specifically in homological algebra, a resolution (or left resolution; dually a coresolution or right resolution) is an exact sequence of modules (or, more generally, of objects of an abelian category) that is used to de ...
.
Statement
Hilbert's syzygy theorem states that, if is a finitely generated module over a
polynomial ring
In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring formed from the set of polynomials in one or more indeterminates (traditionally also called variables) with coefficients in another ring, ...