Regular Sequence
In commutative algebra, a regular sequence is a sequence of elements of a commutative ring which are as independent as possible, in a precise sense. This is the algebraic analogue of the geometric notion of a complete intersection. Definitions Given a commutative ring ''R'' and an ''R''- module ''M'', an element ''r'' in ''R'' is called a non-zero-divisor on ''M'' if ''r m'' = 0 implies ''m'' = 0 for ''m'' in ''M''. An ''M''-regular sequence is a sequence ''r''1, ..., ''r''''d'' of elements of ''R'' such that ''r''1 is a not a zero-divisor on ''M'' and ''r''''i'' is a not a zero-divisor on ''M''/(''r''1, ..., ''r''''i''−1)''M'' for ''i'' = 2, ..., ''d''. Some authors also require that ''M''/(''r''1, ..., ''r''''d'')''M'' is not zero. Intuitively, to say that ''r''1, ..., ''r''''d'' is an ''M''-regular sequence means that these elements "cut ''M'' down" as much as possible, when we pass successively from ''M'' to ''M''/(''r''1)''M'', to ''M''/(''r''1, ''r''2)''M'', and so on. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Commutative Algebra
Commutative algebra, first known as ideal theory, is the branch of algebra that studies commutative rings, their ideal (ring theory), ideals, and module (mathematics), modules over such rings. Both algebraic geometry and algebraic number theory build on commutative algebra. Prominent examples of commutative rings include polynomial rings; rings of algebraic integers, including the ordinary integers \mathbb; and p-adic number, ''p''-adic integers. Commutative algebra is the main technical tool of algebraic geometry, and many results and concepts of commutative algebra are strongly related with geometrical concepts. The study of rings that are not necessarily commutative is known as noncommutative algebra; it includes ring theory, representation theory, and the theory of Banach algebras. Overview Commutative algebra is essentially the study of the rings occurring in algebraic number theory and algebraic geometry. Several concepts of commutative algebras have been developed in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Regular Local Ring
In commutative algebra, a regular local ring is a Noetherian local ring having the property that the minimal number of generators of its maximal ideal is equal to its Krull dimension. In symbols, let A be any Noetherian local ring with unique maximal ideal \mathfrak, and suppose a_1,\cdots,a_n is a minimal set of generators of \mathfrak. Then Krull's principal ideal theorem implies that n\geq\dim A, and A is regular whenever n=\dim A. The concept is motivated by its geometric meaning. A point x on an algebraic variety X is nonsingular (a smooth point) if and only if the local ring \mathcal_ of germs at x is regular. (See also: regular scheme.) Regular local rings are ''not'' related to von Neumann regular rings. For Noetherian local rings, there is the following chain of inclusions: Characterizations There are a number of useful definitions of a regular local ring, one of which is mentioned above. In particular, if A is a Noetherian local ring with maximal ideal \mathfrak, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
David Eisenbud
David Eisenbud (born 8 April 1947 in New York City) is an American mathematician. He is a professor of mathematics at the University of California, Berkeley and former director of the then Mathematical Sciences Research Institute (MSRI), now known as Simons Laufer Mathematical Sciences Institute (SLMath). He served as Director of MSRI from 1997 to 2007, and then again from 2013 to 2022. Biography Eisenbud is the son of mathematical physicist Leonard Eisenbud, who was a student and collaborator of the renowned physicist Eugene Wigner. Eisenbud received his Ph.D. in 1970 from the University of Chicago, where he was a student of Saunders Mac Lane and, unofficially, James Christopher Robson. He then taught at Brandeis University from 1970 to 1997, during which time he had visiting positions at Harvard University, Institut des Hautes Études Scientifiques (IHÉS), University of Bonn, and Centre national de la recherche scientifique (CNRS). He joined the staff at MSRI in 1997, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second-largest academic publisher with 65 staff in 1872.Chronology ". Springer Science+Business Media. In 1964, Springer expanded its business internationally, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Depth (ring Theory)
In commutative algebra, commutative and homological algebra, homological algebra, depth is an important invariant of ring (mathematics), rings and module (mathematics), modules. Although depth can be defined more generally, the most common case considered is the case of modules over a commutative Noetherian ring, Noetherian local ring. In this case, the depth of a module is related with its projective dimension by the Auslander–Buchsbaum formula. A more elementary property of depth is the inequality : \mathrm(M) \leq \dim(M), where \dim M denotes the Krull dimension of the module M. Depth is used to define classes of rings and modules with good properties, for example, Cohen-Macaulay rings and modules, for which equality holds. Definition Let R be a commutative ring, I an ideal of R and M a finitely generated module, finitely generated R-module with the property that I M is properly contained in M. (That is, some elements of M are not in I M.) Then the I-depth of M, also com ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Normal Bundle
In differential geometry, a field of mathematics, a normal bundle is a particular kind of vector bundle, complementary to the tangent bundle, and coming from an embedding (or immersion). Definition Riemannian manifold Let (M,g) be a Riemannian manifold, and S \subset M a Riemannian submanifold. Define, for a given p \in S, a vector n \in \mathrm_p M to be '' normal'' to S whenever g(n,v)=0 for all v\in \mathrm_p S (so that n is orthogonal to \mathrm_p S). The set \mathrm_p S of all such n is then called the ''normal space'' to S at p. Just as the total space of the tangent bundle to a manifold is constructed from all tangent spaces to the manifold, the total space of the normal bundle \mathrm S to S is defined as :\mathrmS := \coprod_ \mathrm_p S. The conormal bundle is defined as the dual bundle to the normal bundle. It can be realised naturally as a sub-bundle of the cotangent bundle. General definition More abstractly, given an immersion i: N \to M (for instance an em ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Complete Intersection Ring
In commutative algebra, a complete intersection ring is a commutative ring similar to the coordinate rings of varieties that are complete intersections. Informally, they can be thought of roughly as the local rings that can be defined using the "minimum possible" number of relations. For Noetherian local rings, there is the following chain of inclusions: Definition A local complete intersection ring is a Noetherian local ring whose completion is the quotient of a regular local ring by an ideal generated by a regular sequence. Taking the completion is a minor technical complication caused by the fact that not all local rings are quotients of regular ones. For rings that are quotients of regular local rings, which covers most local rings that occur in algebraic geometry, it is not necessary to take completions in the definition. There is an alternative intrinsic definition that does not depend on embedding the ring in a regular local ring. If ''R'' is a Noetherian local ring wit ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Resolution (algebra)
In mathematics, and more specifically in homological algebra, a resolution (or left resolution; dually a coresolution or right resolution) is an exact sequence of module (mathematics), modules (or, more generally, of Object (category theory), objects of an abelian category) that is used to define invariant (mathematics), invariants characterizing the structure of a specific module or object of this category. When, as usually, arrows are oriented to the right, the sequence is supposed to be infinite to the left for (left) resolutions, and to the right for right resolutions. However, a finite resolution is one where only finitely many of the objects in the sequence are Zero object, non-zero; it is usually represented by a finite exact sequence in which the leftmost object (for resolutions) or the rightmost object (for coresolutions) is the zero-object. Generally, the objects in the sequence are restricted to have some property ''P'' (for example to be free). Thus one speaks of a ''P r ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Koszul Complex
In mathematics, the Koszul complex was first introduced to define a cohomology theory for Lie algebras, by Jean-Louis Koszul (see Lie algebra cohomology). It turned out to be a useful general construction in homological algebra. As a tool, its homology can be used to tell when a set of elements of a (local) ring is an Regular sequence#Definitions, M-regular sequence, and hence it can be used to prove basic facts about the Depth (ring theory), depth of a module or ideal which is an algebraic notion of dimension that is related to but different from the geometric notion of Krull dimension. Moreover, in certain circumstances, the complex is the complex of Hilbert's syzygy theorem#Syzygies (relations), syzygies, that is, it tells you the relations between generators of a module, the relations between these relations, and so forth. Definition Let ''A'' be a commutative ring and ''s: Ar → A'' an ''A''-linear map. Its Koszul complex ''Ks'' is : \bigwedge^r A^r\ \to\ \bigwedge^A^r\ \ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Localization Of A Ring
Localization or localisation may refer to: Biology * Localization of function, locating psychological functions in the brain or nervous system; see Linguistic intelligence * Localization of sensation, ability to tell what part of the body is affected by touch or other sensation; see Allochiria * Neurologic localization, in neurology, the process of deducing the location of injury based on symptoms and neurological examination * Nuclear localization signal, an amino acid sequence on the surface of a protein which acts like a 'tag' to localize the protein in the cell * Sound localization, a listener's ability to identify the location or origin of a detected sound * Subcellular localization, organization of cellular components into different regions of a cell Engineering and technology * GSM localization, determining the location of an active cell phone or wireless transceiver * Robot localization, figuring out robot's position in an environment * Indoor positioning system, a networ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Commutative Ring
In mathematics, a commutative ring is a Ring (mathematics), ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring properties that are not specific to commutative rings. This distinction results from the high number of fundamental properties of commutative rings that do not extend to noncommutative rings. Commutative rings appear in the following chain of subclass (set theory), class inclusions: Definition and first examples Definition A ''ring'' is a Set (mathematics), set R equipped with two binary operations, i.e. operations combining any two elements of the ring to a third. They are called ''addition'' and ''multiplication'' and commonly denoted by "+" and "\cdot"; e.g. a+b and a \cdot b. To form a ring these two operations have to satisfy a number of properties: the ring has to be an abelian group under addition as well as a monoid under m ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |