{{Short description, none
Numerous things are named after the French mathematician
Charles Hermite
Charles Hermite () FRS FRSE MIAS (24 December 1822 – 14 January 1901) was a French mathematician who did research concerning number theory, quadratic forms, invariant theory, orthogonal polynomials, elliptic functions, and algebra.
Hermite p ...
(1822–1901):
Hermite
*
Cubic Hermite spline
In numerical analysis, a cubic Hermite spline or cubic Hermite interpolator is a spline where each piece is a third-degree polynomial specified in Hermite form, that is, by its values and first derivatives at the end points of the correspondin ...
Gaussian quadrature
In numerical analysis, an -point Gaussian quadrature rule, named after Carl Friedrich Gauss, is a quadrature rule constructed to yield an exact result for polynomials of degree or less by a suitable choice of the nodes and weights for .
Th ...
Hermite distribution
In probability theory and statistics, the Hermite distribution, named after Charles Hermite, is a discrete probability distribution used to model ''count data'' with more than one parameter. This distribution is flexible in terms of its ability t ...
, a parametrized family of discrete probability distributions
* Hermite–Lindemann theorem, theorem about transcendental numbers
*
Hermite constant
In mathematics, the Hermite constant, named after Charles Hermite, determines how long a shortest element of a lattice in Euclidean space can be.
The constant ''γn'' for integers ''n'' > 0 is defined as follows. For a lattice ''L'' in Euclidea ...
Hermite interpolation
In numerical analysis, Hermite interpolation, named after Charles Hermite, is a method of polynomial interpolation, which generalizes Lagrange interpolation. Lagrange interpolation allows computing a polynomial of degree less than that takes th ...
Hermite–Minkowski theorem
In mathematics, especially in algebraic number theory, the Hermite–Minkowski theorem states that for any integer ''N'' there are only finitely many number fields, i.e., finite field extensions ''K'' of the rational numbers Q, such that the discri ...
, stating that only finitely many number fields have small discriminants
*
Hermite normal form
In linear algebra, the Hermite normal form is an analogue of reduced echelon form for matrices over the integers \Z. Just as reduced echelon form can be used to solve problems about the solution to the linear system Ax=b where x \in \mathbb^n, the ...
, a form of row-reduced matrices
* Hermite numbers, integers related to the Hermite polynomials
*
Hermite polynomials
In mathematics, the Hermite polynomials are a classical orthogonal polynomial sequence.
The polynomials arise in:
* signal processing as Hermitian wavelets for wavelet transform analysis
* probability, such as the Edgeworth series, as well a ...
, a sequence of polynomials orthogonal with respect to the
normal distribution
In probability theory and statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is
f(x) = \frac ...
reciprocity law
In mathematics, a reciprocity law is a generalization of the law of quadratic reciprocity to arbitrary monic irreducible polynomials f(x) with integer coefficients. Recall that first reciprocity law, quadratic reciprocity, determines when an ir ...
concerning covariants of binary forms
*
Hermite ring
Charles Hermite () FRS FRSE MIAS (24 December 1822 – 14 January 1901) was a French mathematician who did research concerning number theory, quadratic forms, invariant theory, orthogonal polynomials, elliptic functions, and algebra.
Hermite p ...
, a
ring
(The) Ring(s) may refer to:
* Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry
* To make a sound with a bell, and the sound made by a bell
Arts, entertainment, and media Film and TV
* ''The Ring'' (franchise), a ...
Hermite's identity
In mathematics, Hermite's identity, named after Charles Hermite, gives the value of a summation involving the floor function. It states that for every real number ''x'' and for every positive integer ''n'' the following identity holds:.
: \sum_ ...
, an identity on fractional parts of integer multiples of real numbers
* Hermite's problem, an unsolved problem on certain ways of expressing real numbers
* Hermite's theorem, that there are only finitely many
algebraic number field
In mathematics, an algebraic number field (or simply number field) is an extension field K of the field of rational numbers such that the field extension K / \mathbb has finite degree (and hence is an algebraic field extension).
Thus K is a ...
s of
discriminant
In mathematics, the discriminant of a polynomial is a quantity that depends on the coefficients and allows deducing some properties of the zero of a function, roots without computing them. More precisely, it is a polynomial function of the coef ...
Hermitian adjoint
In mathematics, specifically in operator theory, each linear operator A on an inner product space defines a Hermitian adjoint (or adjoint) operator A^* on that space according to the rule
:\langle Ax,y \rangle = \langle x,A^*y \rangle,
where \l ...
* Hermitian connection, the unique connection on a Hermitian manifold that satisfies specific conditions
*
Hermitian form
In mathematics, a sesquilinear form is a generalization of a bilinear form that, in turn, is a generalization of the concept of the dot product of Euclidean space. A bilinear form is linear map, linear in each of its arguments, but a sesquilinear f ...
, a specific sesquilinear form
*
Hermitian function
In mathematical analysis, a Hermitian function is a complex function with the property that its complex conjugate is equal to the original function with the variable changed in sign:
:f^*(x) = f(-x)
(where the ^* indicates the complex conjugate) ...
, a complex function whose complex conjugate is equal to the original function with the variable changed in sign
*
Hermitian manifold
In mathematics, and more specifically in differential geometry, a Hermitian manifold is the complex analogue of a Riemannian manifold. More precisely, a Hermitian manifold is a complex manifold with a smoothly varying Hermitian inner product on ea ...
/structure
**
Hermitian metric
In mathematics, and more specifically in differential geometry, a Hermitian manifold is the complex analogue of a Riemannian manifold
In differential geometry, a Riemannian manifold is a geometric space on which many geometric notions such as ...
, is a smoothly varying positive-definite Hermitian form on each fiber of a complex vector bundle
*
Hermitian matrix
In mathematics, a Hermitian matrix (or self-adjoint matrix) is a complex square matrix that is equal to its own conjugate transpose—that is, the element in the -th row and -th column is equal to the complex conjugate of the element in the ...
, a square matrix with complex entries that is equal to its own conjugate transpose
**
Skew-Hermitian matrix
__NOTOC__
In linear algebra, a square matrix with complex entries is said to be skew-Hermitian or anti-Hermitian if its conjugate transpose is the negative of the original matrix. That is, the matrix A is skew-Hermitian if it satisfies the relation ...
*''
Hermitian operator
In mathematics, a self-adjoint operator on a complex vector space ''V'' with inner product \langle\cdot,\cdot\rangle is a linear map ''A'' (from ''V'' to itself) that is its own adjoint. That is, \langle Ax,y \rangle = \langle x,Ay \rangle for al ...
'', an operator (sometimes a symmetric operator, sometimes a symmetric densely defined operator, sometimes a
self-adjoint operator
In mathematics, a self-adjoint operator on a complex vector space ''V'' with inner product \langle\cdot,\cdot\rangle is a linear map ''A'' (from ''V'' to itself) that is its own adjoint. That is, \langle Ax,y \rangle = \langle x,Ay \rangle for al ...
)
* Hermitian polynomials, a classical orthogonal polynomial sequence that arise in probability
*
Hermitian symmetric space
In mathematics, a Hermitian symmetric space is a Hermitian manifold which at every point has an inversion symmetry preserving the Hermitian structure. First studied by Élie Cartan, they form a natural generalization of the notion of Riemannian ...
, a Kähler manifold which, as a Riemannian manifold, is a Riemannian symmetric space
*
Hermitian transpose
In mathematics, the conjugate transpose, also known as the Hermitian transpose, of an m \times n complex matrix \mathbf is an n \times m matrix obtained by transposing \mathbf and applying complex conjugation to each entry (the complex conjugate ...
, the transpose of a matrix and with the complex conjugate of each entry
* Hermitian variety, a generalisation of quadrics
*
Hermitian wavelet
Hermitian wavelets are a family of discrete and continuous wavelets used in the constant and discrete Hermite wavelet transforms. The n^\textrm Hermitian wavelet is defined as the normalized n^\textrm derivative of a Gaussian distribution for ea ...
main-belt asteroid
The asteroid belt is a torus-shaped region in the Solar System, centered on the Sun and roughly spanning the space between the orbits of the planets Jupiter and Mars. It contains a great many solid, irregularly shaped bodies called asteroids ...
Hermite
Charles Hermite () FRS FRSE MIAS (24 December 1822 – 14 January 1901) was a French mathematician who did research concerning number theory, quadratic forms, invariant theory, orthogonal polynomials, elliptic functions, and algebra.
Hermite p ...