HOME

TheInfoList



OR:

The halogens () are a group in the
periodic table The periodic table, also known as the periodic table of the elements, is an ordered arrangement of the chemical elements into rows (" periods") and columns (" groups"). It is an icon of chemistry and is widely used in physics and other s ...
consisting of six chemically related elements:
fluorine Fluorine is a chemical element; it has Chemical symbol, symbol F and atomic number 9. It is the lightest halogen and exists at Standard temperature and pressure, standard conditions as pale yellow Diatomic molecule, diatomic gas. Fluorine is extre ...
(F),
chlorine Chlorine is a chemical element; it has Symbol (chemistry), symbol Cl and atomic number 17. The second-lightest of the halogens, it appears between fluorine and bromine in the periodic table and its properties are mostly intermediate between ...
(Cl),
bromine Bromine is a chemical element; it has chemical symbol, symbol Br and atomic number 35. It is a volatile red-brown liquid at room temperature that evaporates readily to form a similarly coloured vapour. Its properties are intermediate between th ...
(Br),
iodine Iodine is a chemical element; it has symbol I and atomic number 53. The heaviest of the stable halogens, it exists at standard conditions as a semi-lustrous, non-metallic solid that melts to form a deep violet liquid at , and boils to a vi ...
(I), and the
radioactive Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is conside ...
elements
astatine Astatine is a chemical element; it has Symbol (chemistry), symbol At and atomic number 85. It is the abundance of elements in Earth's crust, rarest naturally occurring element in the Earth's crust, occurring only as the Decay chain, decay product ...
(At) and
tennessine Tennessine is a synthetic element; it has Chemical symbol, symbol Ts and atomic number 117. It has the second-highest atomic number and joint-highest atomic mass of all known elements and is the penultimate element of the Period 7 element, 7th ...
(Ts), though some authors would exclude tennessine as its chemistry is unknown and is theoretically expected to be more like that of
gallium Gallium is a chemical element; it has Chemical symbol, symbol Ga and atomic number 31. Discovered by the French chemist Paul-Émile Lecoq de Boisbaudran in 1875, elemental gallium is a soft, silvery metal at standard temperature and pressure. ...
. In the modern
IUPAC The International Union of Pure and Applied Chemistry (IUPAC ) is an international federation of National Adhering Organizations working for the advancement of the chemical sciences, especially by developing nomenclature and terminology. It is ...
nomenclature, this group is known as group 17. The word "halogen" means "salt former" or "salt maker". When halogens react with
metal A metal () is a material that, when polished or fractured, shows a lustrous appearance, and conducts electrical resistivity and conductivity, electricity and thermal conductivity, heat relatively well. These properties are all associated wit ...
s, they produce a wide range of salts, including calcium fluoride,
sodium chloride Sodium chloride , commonly known as Salt#Edible salt, edible salt, is an ionic compound with the chemical formula NaCl, representing a 1:1 ratio of sodium and chloride ions. It is transparent or translucent, brittle, hygroscopic, and occurs a ...
(common table salt), silver bromide and potassium iodide. The group of halogens is the only periodic table group that contains elements in three of the main states of matter at
standard temperature and pressure Standard temperature and pressure (STP) or standard conditions for temperature and pressure are various standard sets of conditions for experimental measurements used to allow comparisons to be made between different sets of data. The most used ...
, though not far above room temperature the same becomes true of groups 1 and 15, assuming white phosphorus is taken as the standard state.This could also be the case for group 12, although
copernicium Copernicium is a synthetic chemical element; it has symbol Cn and atomic number 112. Its known isotopes are extremely radioactive, and have only been created in a laboratory. The most stable known isotope, copernicium-285, has a half-life of ap ...
's melting and boiling points are still uncertain.
All of the halogens form acids when bonded to hydrogen. Most halogens are typically produced from
mineral In geology and mineralogy, a mineral or mineral species is, broadly speaking, a solid substance with a fairly well-defined chemical composition and a specific crystal structure that occurs naturally in pure form.John P. Rafferty, ed. (2011): Mi ...
s or salts. The middle halogens—chlorine, bromine, and iodine—are often used as
disinfectant A disinfectant is a chemical substance or compound used to inactivate or destroy microorganisms on inert surfaces. Disinfection does not necessarily kill all microorganisms, especially resistant bacterial spores; it is less effective than ...
s. Organobromides are the most important class of
flame retardant Flame retardants are a diverse group of chemicals that are added to manufactured materials, such as plastics and textiles, and surface finishes and coatings. Flame retardants are activated by the presence of an combustion, ignition source and pr ...
s, while elemental halogens are dangerous and can be toxic.


History

The fluorine mineral fluorspar was known as early as 1529. It is believed to be found in the foot bones of early dinosaurs. Early chemists realized that fluorine compounds contain an undiscovered element, but were unable to isolate it. In 1860, George Gore, an English chemist, ran a current of electricity through hydrofluoric acid and probably produced fluorine, but he was unable to prove his results at the time. In 1886, Henri Moissan, a chemist in Paris, performed
electrolysis In chemistry and manufacturing, electrolysis is a technique that uses Direct current, direct electric current (DC) to drive an otherwise non-spontaneous chemical reaction. Electrolysis is commercially important as a stage in the separation of c ...
on potassium bifluoride dissolved in anhydrous
hydrogen fluoride Hydrogen fluoride (fluorane) is an Inorganic chemistry, inorganic compound with chemical formula . It is a very poisonous, colorless gas or liquid that dissolves in water to yield hydrofluoric acid. It is the principal industrial source of fluori ...
, and successfully isolated fluorine.
Hydrochloric acid Hydrochloric acid, also known as muriatic acid or spirits of salt, is an aqueous solution of hydrogen chloride (HCl). It is a colorless solution with a distinctive pungency, pungent smell. It is classified as a acid strength, strong acid. It is ...
was known to alchemists and early chemists. However, elemental chlorine was not produced until 1774, when
Carl Wilhelm Scheele Carl Wilhelm Scheele (, ; 9 December 1742 – 21 May 1786) was a Swedish Pomerania, German-Swedish pharmaceutical chemist. Scheele discovered oxygen (although Joseph Priestley published his findings first), and identified the elements molybd ...
heated hydrochloric acid with manganese dioxide. Scheele called the element "dephlogisticated muriatic acid", which is how chlorine was known for 33 years. In 1807,
Humphry Davy Sir Humphry Davy, 1st Baronet (17 December 177829 May 1829) was a British chemist and inventor who invented the Davy lamp and a very early form of arc lamp. He is also remembered for isolating, by using electricity, several Chemical element, e ...
investigated chlorine and discovered that it is an actual element. Chlorine gas was used as a poisonous gas during
World War I World War I or the First World War (28 July 1914 – 11 November 1918), also known as the Great War, was a World war, global conflict between two coalitions: the Allies of World War I, Allies (or Entente) and the Central Powers. Fighting to ...
. It displaced oxygen in contaminated areas and replaced common oxygenated air with the toxic chlorine gas. The gas would burn human tissue externally and internally, especially the lungs, making breathing difficult or impossible depending on the level of contamination. Bromine was discovered in the 1820s by Antoine Jérôme Balard. Balard discovered bromine by passing chlorine gas through a sample of brine. He originally proposed the name ''muride'' for the new element, but the
French Academy French may refer to: * Something of, from, or related to France ** French language, which originated in France ** French people, a nation and ethnic group ** French cuisine, cooking traditions and practices Arts and media * The French (band), ...
changed the element's name to bromine. Iodine was discovered by Bernard Courtois, who was using seaweed ash as part of a process for saltpeter manufacture. Courtois typically boiled the seaweed ash with water to generate potassium chloride. However, in 1811, Courtois added sulfuric acid to his process and found that his process produced purple fumes that condensed into black crystals. Suspecting that these crystals were a new element, Courtois sent samples to other chemists for investigation. Iodine was proven to be a new element by Joseph Gay-Lussac. In 1931, Fred Allison claimed to have discovered element 85 with a magneto-optical machine, and named the element Alabamine, but was mistaken. In 1937, Rajendralal De claimed to have discovered element 85 in minerals, and called the element dakine, but he was also mistaken. An attempt at discovering element 85 in 1939 by Horia Hulubei and Yvette Cauchois via
spectroscopy Spectroscopy is the field of study that measures and interprets electromagnetic spectra. In narrower contexts, spectroscopy is the precise study of color as generalized from visible light to all bands of the electromagnetic spectrum. Spectro ...
was also unsuccessful, as was an attempt in the same year by Walter Minder, who discovered an iodine-like element resulting from
beta decay In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which an atomic nucleus emits a beta particle (fast energetic electron or positron), transforming into an isobar of that nuclide. For example, beta decay of a neutron ...
of polonium. Element 85, now named
astatine Astatine is a chemical element; it has Symbol (chemistry), symbol At and atomic number 85. It is the abundance of elements in Earth's crust, rarest naturally occurring element in the Earth's crust, occurring only as the Decay chain, decay product ...
, was produced successfully in 1940 by Dale R. Corson, K.R. Mackenzie, and Emilio G. Segrè, who bombarded
bismuth Bismuth is a chemical element; it has symbol Bi and atomic number 83. It is a post-transition metal and one of the pnictogens, with chemical properties resembling its lighter group 15 siblings arsenic and antimony. Elemental bismuth occurs nat ...
with
alpha particle Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. They are generally produced in the process of alpha decay but may also be produce ...
s. In 2010, a team led by nuclear physicist
Yuri Oganessian Yuri Tsolakovich Oganessian (born 14 April 1933) is an Armenian and Russian nuclear physicist who is best known as a researcher of superheavy elements. He has led the discovery of multiple chemical elements. He succeeded Georgy Flyorov as dir ...
involving scientists from the JINR,
Oak Ridge National Laboratory Oak Ridge National Laboratory (ORNL) is a federally funded research and development centers, federally funded research and development center in Oak Ridge, Tennessee, United States. Founded in 1943, the laboratory is sponsored by the United Sta ...
,
Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory (LLNL) is a Federally funded research and development centers, federally funded research and development center in Livermore, California, United States. Originally established in 1952, the laboratory now i ...
, and
Vanderbilt University Vanderbilt University (informally Vandy or VU) is a private university, private research university in Nashville, Tennessee, United States. Founded in 1873, it was named in honor of shipping and railroad magnate Cornelius Vanderbilt, who provide ...
successfully bombarded berkelium-249 atoms with calcium-48 atoms to make tennessine.


Etymology

In 1811, the German chemist Johann Schweigger proposed that the name "halogen" – meaning "salt producer", from αλς als"salt" and γενειν enein"to beget" – replace the name "chlorine", which had been proposed by the English chemist
Humphry Davy Sir Humphry Davy, 1st Baronet (17 December 177829 May 1829) was a British chemist and inventor who invented the Davy lamp and a very early form of arc lamp. He is also remembered for isolating, by using electricity, several Chemical element, e ...
. Davy's name for the element prevailed. However, in 1826, the Swedish
chemist A chemist (from Greek ''chēm(ía)'' alchemy; replacing ''chymist'' from Medieval Latin ''alchemist'') is a graduated scientist trained in the study of chemistry, or an officially enrolled student in the field. Chemists study the composition of ...
Baron Jöns Jacob Berzelius proposed the term "halogen" for the elements fluorine, chlorine, and iodine, which produce a sea-salt-like substance when they form a compound with an alkaline metal. The English names of these elements all have the ending
-ine ''-ine'' is a suffix used in chemistry to denote two kinds of substance. The first is a chemically basic and alkaloidal substance. It was proposed by Joseph Louis Gay-Lussac in an editorial accompanying a paper by Friedrich Sertürner describin ...
. Fluorine's name comes from the
Latin Latin ( or ) is a classical language belonging to the Italic languages, Italic branch of the Indo-European languages. Latin was originally spoken by the Latins (Italic tribe), Latins in Latium (now known as Lazio), the lower Tiber area aroun ...
word ''fluere'', meaning "to flow", because it was derived from the mineral fluorite, which was used as a
flux Flux describes any effect that appears to pass or travel (whether it actually moves or not) through a surface or substance. Flux is a concept in applied mathematics and vector calculus which has many applications in physics. For transport phe ...
in metalworking. Chlorine's name comes from the Greek word ''chloros'', meaning "greenish-yellow". Bromine's name comes from the Greek word ''bromos'', meaning "stench". Iodine's name comes from the Greek word ''iodes'', meaning "violet". Astatine's name comes from the Greek word ''astatos'', meaning "unstable". Tennessine is named after the US state of
Tennessee Tennessee (, ), officially the State of Tennessee, is a landlocked U.S. state, state in the Southeastern United States, Southeastern region of the United States. It borders Kentucky to the north, Virginia to the northeast, North Carolina t ...
, where it was synthesized.


Characteristics


Chemical

The halogens fluorine, chlorine, bromine, and iodine are nonmetals; the chemical properties of astatine and tennessine, two heaviest group 17 members, have not been conclusively investigated. The halogens show trends in chemical bond energy moving from top to bottom of the periodic table column with fluorine deviating slightly. It follows a trend in having the highest bond energy in compounds with other atoms, but it has very weak bonds within the diatomic F2 molecule. This means that further down group 17 in the periodic table, the reactivity of elements decreases because of the increasing size of the atoms. Halogens are highly reactive, and as such can be harmful or lethal to biological organisms in sufficient quantities. This high reactivity is due to the high
electronegativity Electronegativity, symbolized as , is the tendency for an atom of a given chemical element to attract shared electrons (or electron density) when forming a chemical bond. An atom's electronegativity is affected by both its atomic number and the ...
of the atoms due to their high
effective nuclear charge In atomic physics, the effective nuclear charge of an electron in a multi-electron atom or ion is the number of elementary charges (e) an electron experiences by the nucleus. It is denoted by ''Z''eff. The term "effective" is used because the shi ...
. Because the halogens have seven valence electrons in their outermost energy level, they can gain an electron by reacting with atoms of other elements to satisfy the
octet rule The octet rule is a chemical rule of thumb that reflects the theory that main-group elements tend to bond in such a way that each atom has eight electrons in its valence shell, giving it the same electronic configuration as a noble gas. The ru ...
.
Fluorine Fluorine is a chemical element; it has Chemical symbol, symbol F and atomic number 9. It is the lightest halogen and exists at Standard temperature and pressure, standard conditions as pale yellow Diatomic molecule, diatomic gas. Fluorine is extre ...
is the most reactive of all elements; it is the only element more electronegative than oxygen, it attacks otherwise-inert materials such as glass, and it forms compounds with the usually inert
noble gas The noble gases (historically the inert gases, sometimes referred to as aerogens) are the members of Group (periodic table), group 18 of the periodic table: helium (He), neon (Ne), argon (Ar), krypton (Kr), xenon (Xe), radon (Rn) and, in some ...
es. It is a
corrosive Corrosion is a natural process that converts a refined metal into a more chemically stable oxide. It is the gradual deterioration of materials (usually a metal) by chemical or electrochemical reaction with their environment. Corrosion engine ...
and highly toxic gas. The reactivity of fluorine is such that, if used or stored in laboratory glassware, it can react with glass in the presence of small amounts of water to form silicon tetrafluoride (SiF4). Thus, fluorine must be handled with substances such as Teflon (which is itself an
organofluorine Organofluorine chemistry describes the chemistry of organofluorine compounds, organic compounds that contain a carbon–fluorine bond. Organofluorine compounds find diverse applications ranging from Lipophobicity, oil and hydrophobe, water repell ...
compound), extremely dry glass, or metals such as copper or steel, which form a protective layer of fluoride on their surface. The high reactivity of fluorine allows some of the strongest bonds possible, especially to carbon. For example, Teflon is fluorine bonded with carbon and is extremely resistant to thermal and chemical attacks and has a high melting point.


Molecules


= Diatomic halogen molecules

= The stable halogens form homonuclear
diatomic Diatomic molecules () are molecules composed of only two atoms, of the same or different chemical elements. If a diatomic molecule consists of two atoms of the same element, such as hydrogen () or oxygen (), then it is said to be homonuclear mol ...
molecules A molecule is a group of two or more atoms that are held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions that satisfy this criterion. In quantum physics, organic chemistry ...
. Due to relatively weak intermolecular forces, chlorine and fluorine form part of the group known as "elemental gases". The elements become less reactive and have higher melting points as the atomic number increases. The higher melting points are caused by stronger
London dispersion force London dispersion forces (LDF, also known as dispersion forces, London forces, instantaneous dipole–induced dipole forces, fluctuating induced dipole bonds or loosely as van der Waals forces) are a type of intermolecular force acting between at ...
s resulting from more electrons.


Compounds


= Hydrogen halides

= All of the halogens have been observed to react with hydrogen to form hydrogen halides. For fluorine, chlorine, and bromine, this reaction is in the form of: : H2 + X2 → 2HX However, hydrogen iodide and hydrogen astatide can split back into their constituent elements. The hydrogen-halogen reactions get gradually less reactive toward the heavier halogens. A fluorine-hydrogen reaction is explosive even when it is dark and cold. A chlorine-hydrogen reaction is also explosive, but only in the presence of light and heat. A bromine-hydrogen reaction is even less explosive; it is explosive only when exposed to flames. Iodine and astatine only partially react with hydrogen, forming equilibria. All halogens form binary compounds with hydrogen known as the hydrogen halides:
hydrogen fluoride Hydrogen fluoride (fluorane) is an Inorganic chemistry, inorganic compound with chemical formula . It is a very poisonous, colorless gas or liquid that dissolves in water to yield hydrofluoric acid. It is the principal industrial source of fluori ...
(HF),
hydrogen chloride The Chemical compound, compound hydrogen chloride has the chemical formula and as such is a hydrogen halide. At room temperature, it is a colorless gas, which forms white fumes of hydrochloric acid upon contact with atmospheric water vapor. Hyd ...
(HCl), hydrogen bromide (HBr),
hydrogen iodide Hydrogen iodide (HI) is a diatomic molecule and hydrogen halide. Aqueous solutions of HI are known as hydroiodic acid or hydriodic acid, a strong acid. Hydrogen iodide and hydroiodic acid are, however, different in that the former is a gas und ...
(HI), and hydrogen astatide (HAt). All of these compounds form acids when mixed with water. Hydrogen fluoride is the only hydrogen halide that forms
hydrogen bond In chemistry, a hydrogen bond (H-bond) is a specific type of molecular interaction that exhibits partial covalent character and cannot be described as a purely electrostatic force. It occurs when a hydrogen (H) atom, Covalent bond, covalently b ...
s. Hydrochloric acid, hydrobromic acid, hydroiodic acid, and acid are all
strong acid Acid strength is the tendency of an acid, symbolised by the chemical formula , to dissociate into a hydron (chemistry), proton, , and an anion, . The Dissociation (chemistry), dissociation or ionization of a strong acid in solution is effectivel ...
s, but hydrofluoric acid is a weak acid. All of the hydrogen halides are irritants. Hydrogen fluoride and hydrogen chloride are highly
acid An acid is a molecule or ion capable of either donating a proton (i.e. Hydron, hydrogen cation, H+), known as a Brønsted–Lowry acid–base theory, Brønsted–Lowry acid, or forming a covalent bond with an electron pair, known as a Lewis ...
ic. Hydrogen fluoride is used as an indu strial chemical, and is highly toxic, causing
pulmonary edema Pulmonary edema (British English: oedema), also known as pulmonary congestion, is excessive fluid accumulation in the tissue or air spaces (usually alveoli) of the lungs. This leads to impaired gas exchange, most often leading to shortness ...
and damaging cells. Hydrogen chloride is also a dangerous chemical. Breathing in gas with more than fifty parts per million of hydrogen chloride can cause death in humans. Hydrogen bromide is even more toxic and irritating than hydrogen chloride. Breathing in gas with more than thirty parts per million of hydrogen bromide can be lethal to humans. Hydrogen iodide, like other hydrogen halides, is toxic.


= Metal halides

= All the halogens are known to react with sodium to form sodium fluoride,
sodium chloride Sodium chloride , commonly known as Salt#Edible salt, edible salt, is an ionic compound with the chemical formula NaCl, representing a 1:1 ratio of sodium and chloride ions. It is transparent or translucent, brittle, hygroscopic, and occurs a ...
, sodium bromide,
sodium iodide Sodium iodide (chemical formula NaI) is an ionic compound formed from the chemical reaction of sodium metal and iodine. Under standard conditions, it is a white, water-soluble solid comprising a 1:1 mix of sodium cations (Na+) and iodide anions ...
, and sodium astatide. Heated sodium's reaction with halogens produces bright-orange flames. Sodium's reaction with chlorine is in the form of: : Iron reacts with fluorine, chlorine, and bromine to form iron(III) halides. These reactions are in the form of: : However, when iron reacts with iodine, it forms only iron(II) iodide. : Iron wool can react rapidly with fluorine to form the white compound iron(III) fluoride even in cold temperatures. When chlorine comes into contact with a heated iron, they react to form the black iron(III) chloride. However, if the reaction conditions are moist, this reaction will instead result in a reddish-brown product. Iron can also react with bromine to form iron(III) bromide. This compound is reddish-brown in dry conditions. Iron's reaction with bromine is less reactive than its reaction with fluorine or chlorine. A hot iron can also react with iodine, but it forms iron(II) iodide. This compound may be gray, but the reaction is always contaminated with excess iodine, so it is not known for sure. Iron's reaction with iodine is less vigorous than its reaction with the lighter halogens.


= Interhalogen compounds

= Interhalogen compounds are in the form of XYn where X and Y are halogens and n is one, three, five, or seven. Interhalogen compounds contain at most two different halogens. Large interhalogens, such as can be produced by a reaction of a pure halogen with a smaller interhalogen such as . All interhalogens except can be produced by directly combining pure halogens in various conditions. Interhalogens are typically more reactive than all diatomic halogen molecules except F2 because interhalogen bonds are weaker. However, the chemical properties of interhalogens are still roughly the same as those of
diatomic Diatomic molecules () are molecules composed of only two atoms, of the same or different chemical elements. If a diatomic molecule consists of two atoms of the same element, such as hydrogen () or oxygen (), then it is said to be homonuclear mol ...
halogens. Many interhalogens consist of one or more atoms of fluorine bonding to a heavier halogen. Chlorine and bromine can bond with up to five fluorine atoms, and iodine can bond with up to seven fluorine atoms. Most interhalogen compounds are
covalent A covalent bond is a chemical bond that involves the sharing of electrons to form electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs. The stable balance of attractive and repulsive forces between atom ...
gases. However, some interhalogens are liquids, such as BrF3, and many iodine-containing interhalogens are solids.


= Organohalogen compounds

= Many synthetic
organic compounds Some chemical authorities define an organic compound as a chemical compound that contains a carbon–hydrogen or carbon–carbon bond; others consider an organic compound to be any chemical compound that contains carbon. For example, carbon-co ...
such as
plastic Plastics are a wide range of synthetic polymers, synthetic or Semisynthesis, semisynthetic materials composed primarily of Polymer, polymers. Their defining characteristic, Plasticity (physics), plasticity, allows them to be Injection moulding ...
polymer A polymer () is a chemical substance, substance or material that consists of very large molecules, or macromolecules, that are constituted by many repeat unit, repeating subunits derived from one or more species of monomers. Due to their br ...
s, and a few natural ones, contain halogen atoms; these are known as ''halogenated'' compounds or
organic halide Halocarbon compounds are Chemical compound, chemical compounds in which one or more carbon atoms are linked by covalent bonds with one or more halogen atoms (fluorine, chlorine, bromine or iodine – ) resulting in the formation of organofluor ...
s. Chlorine is by far the most abundant of the halogens in seawater, and the only one needed in relatively large amounts (as chloride ions) by humans. For example, chloride ions play a key role in
brain The brain is an organ (biology), organ that serves as the center of the nervous system in all vertebrate and most invertebrate animals. It consists of nervous tissue and is typically located in the head (cephalization), usually near organs for ...
function by mediating the action of the inhibitory transmitter
GABA GABA (gamma-aminobutyric acid, γ-aminobutyric acid) is the chief inhibitory neurotransmitter in the developmentally mature mammalian central nervous system. Its principal role is reducing neuronal excitability throughout the nervous system. GA ...
and are also used by the body to produce stomach acid. Iodine is needed in trace amounts for the production of thyroid hormones such as
thyroxine Thyroxine, also known as T4, is a hormone produced by the thyroid gland. It is the primary form of thyroid hormone found in the blood and acts as a prohormone of the more active thyroid hormone, triiodothyronine (T3). Thyroxine and its acti ...
. Organohalogens are also synthesized through the nucleophilic abstraction reaction.


= Polyhalogenated compounds

= Polyhalogenated compounds are industrially created compounds substituted with multiple halogens. Many of them are very toxic and bioaccumulate in humans, and have a very wide application range. They include PCBs, PBDEs, and
perfluorinated compound A perfluorinated compound (PFC) or perfluoro compound is an Organofluorine chemistry, organofluorine compound that lacks C-H bonds. Many perfluorinated compounds have properties that are quite different from their C-H containing analogues. Common ...
s (PFCs), as well as numerous other compounds.


Reactions


= Reactions with water

= Fluorine reacts vigorously with water to produce
oxygen Oxygen is a chemical element; it has chemical symbol, symbol O and atomic number 8. It is a member of the chalcogen group (periodic table), group in the periodic table, a highly reactivity (chemistry), reactive nonmetal (chemistry), non ...
(O2) and
hydrogen fluoride Hydrogen fluoride (fluorane) is an Inorganic chemistry, inorganic compound with chemical formula . It is a very poisonous, colorless gas or liquid that dissolves in water to yield hydrofluoric acid. It is the principal industrial source of fluori ...
(HF): : Chlorine has maximum solubility of ca. 7.1 g Cl2 per kg of water at ambient temperature (21 °C). Dissolved chlorine reacts to form
hydrochloric acid Hydrochloric acid, also known as muriatic acid or spirits of salt, is an aqueous solution of hydrogen chloride (HCl). It is a colorless solution with a distinctive pungency, pungent smell. It is classified as a acid strength, strong acid. It is ...
(HCl) and hypochlorous acid, a solution that can be used as a
disinfectant A disinfectant is a chemical substance or compound used to inactivate or destroy microorganisms on inert surfaces. Disinfection does not necessarily kill all microorganisms, especially resistant bacterial spores; it is less effective than ...
or
bleach Bleach is the generic name for any chemical product that is used industrially or domestically to remove color from (i.e. to whiten) fabric or fiber (in a process called bleaching) or to disinfect after cleaning. It often refers specifically t ...
: : Bromine has a solubility of 3.41 g per 100 g of water, but it slowly reacts to form hydrogen bromide (HBr) and hypobromous acid (HBrO): : Iodine, however, is minimally soluble in water (0.03 g/100 g water at 20 °C) and does not react with it. However, iodine will form an aqueous solution in the presence of iodide ion, such as by addition of potassium iodide (KI), because the triiodide ion is formed.


Physical and atomic

The table below is a summary of the key physical and atomic properties of the halogens. Data marked with question marks are either uncertain or are estimations partially based on
periodic trends In chemistry, periodic trends are specific patterns present in the periodic table that illustrate different aspects of certain Chemical element, elements when grouped by period (periodic table), period and/or Group (periodic table), group. They w ...
rather than observations.


Isotopes

Fluorine has one stable and naturally occurring
isotope Isotopes are distinct nuclear species (or ''nuclides'') of the same chemical element. They have the same atomic number (number of protons in their Atomic nucleus, nuclei) and position in the periodic table (and hence belong to the same chemica ...
, fluorine-19. However, there are trace amounts in nature of the radioactive isotope fluorine-23, which occurs via
cluster decay Cluster decay, also named heavy particle radioactivity, heavy ion radioactivity or heavy cluster decay," is a rare type of nuclear decay in which an atomic nucleus emits a small "cluster" of neutrons and protons, more than in an alpha particle, ...
of protactinium-231. A total of eighteen isotopes of fluorine have been discovered, with atomic masses ranging from 13 to 31. Chlorine has two stable and naturally occurring
isotopes Isotopes are distinct nuclear species (or ''nuclides'') of the same chemical element. They have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), but ...
, chlorine-35 and chlorine-37. However, there are trace amounts in nature of the isotope chlorine-36, which occurs via spallation of argon-36. A total of 24 isotopes of chlorine have been discovered, with atomic masses ranging from 28 to 51. There are two stable and naturally occurring isotopes of bromine, bromine-79 and bromine-81. A total of 33 isotopes of bromine have been discovered, with atomic masses ranging from 66 to 98. There is one stable and naturally occurring isotope of iodine, iodine-127. However, there are trace amounts in nature of the radioactive isotope iodine-129, which occurs via spallation and from the radioactive decay of uranium in ores. Several other radioactive isotopes of iodine have also been created naturally via the decay of uranium. A total of 38 isotopes of iodine have been discovered, with atomic masses ranging from 108 to 145. There are no stable isotopes of astatine. However, there are four naturally occurring radioactive isotopes of astatine produced via radioactive decay of
uranium Uranium is a chemical element; it has chemical symbol, symbol U and atomic number 92. It is a silvery-grey metal in the actinide series of the periodic table. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Ura ...
,
neptunium Neptunium is a chemical element; it has chemical symbol, symbol Np and atomic number 93. A radioactivity, radioactive actinide metal, neptunium is the first transuranic element. It is named after Neptune, the planet beyond Uranus in the Solar Syste ...
, and
plutonium Plutonium is a chemical element; it has symbol Pu and atomic number 94. It is a silvery-gray actinide metal that tarnishes when exposed to air, and forms a dull coating when oxidized. The element normally exhibits six allotropes and four ...
. These isotopes are astatine-215, astatine-217, astatine-218, and astatine-219. A total of 31 isotopes of astatine have been discovered, with atomic masses ranging from 191 to 227. There are no stable isotopes of tennessine. Tennessine has only two known synthetic radioisotopes, tennessine-293 and tennessine-294.


Production

Approximately six million metric tons of the fluorine mineral fluorite are produced each year. Four hundred-thousand metric tons of hydrofluoric acid are made each year. Fluorine gas is made from hydrofluoric acid produced as a by-product in
phosphoric acid Phosphoric acid (orthophosphoric acid, monophosphoric acid or phosphoric(V) acid) is a colorless, odorless phosphorus-containing solid, and inorganic compound with the chemical formula . It is commonly encountered as an 85% aqueous solution, ...
manufacture. Approximately 15,000 metric tons of fluorine gas are made per year. The mineral halite is the mineral that is most commonly mined for chlorine, but the minerals
carnallite Carnallite (also carnalite) is an evaporite mineral, a hydrated potassium magnesium chloride with formula KCl.MgCl2·6(H2O). It is variably colored yellow to white, reddish, and sometimes colorless or blue. It is usually massive to fibrous with r ...
and sylvite are also mined for chlorine. Forty million metric tons of chlorine are produced each year by the
electrolysis In chemistry and manufacturing, electrolysis is a technique that uses Direct current, direct electric current (DC) to drive an otherwise non-spontaneous chemical reaction. Electrolysis is commercially important as a stage in the separation of c ...
of brine. Approximately 450,000 metric tons of bromine are produced each year. Fifty percent of all bromine produced is produced in the
United States The United States of America (USA), also known as the United States (U.S.) or America, is a country primarily located in North America. It is a federal republic of 50 U.S. state, states and a federal capital district, Washington, D.C. The 48 ...
, 35% in
Israel Israel, officially the State of Israel, is a country in West Asia. It Borders of Israel, shares borders with Lebanon to the north, Syria to the north-east, Jordan to the east, Egypt to the south-west, and the Mediterranean Sea to the west. Isr ...
, and most of the remainder in
China China, officially the People's Republic of China (PRC), is a country in East Asia. With population of China, a population exceeding 1.4 billion, it is the list of countries by population (United Nations), second-most populous country after ...
. Historically, bromine was produced by adding
sulfuric acid Sulfuric acid (American spelling and the preferred IUPAC name) or sulphuric acid (English in the Commonwealth of Nations, Commonwealth spelling), known in antiquity as oil of vitriol, is a mineral acid composed of the elements sulfur, oxygen, ...
and bleaching powder to natural brine. However, in modern times, bromine is produced by electrolysis, a method invented by Herbert Dow. It is also possible to produce bromine by passing chlorine through seawater and then passing air through the seawater. In 2003, 22,000 metric tons of iodine were produced. Chile produces 40% of all iodine produced,
Japan Japan is an island country in East Asia. Located in the Pacific Ocean off the northeast coast of the Asia, Asian mainland, it is bordered on the west by the Sea of Japan and extends from the Sea of Okhotsk in the north to the East China Sea ...
produces 30%, and smaller amounts are produced in Russia and the United States. Until the 1950s, iodine was extracted from kelp. However, in modern times, iodine is produced in other ways. One way that iodine is produced is by mixing sulfur dioxide with nitrate ores, which contain some iodates. Iodine is also extracted from natural gas fields. Even though astatine is naturally occurring, it is usually produced by bombarding bismuth with alpha particles. Tennessine is made by using a cyclotron, fusing berkelium-249 and calcium-48 to make tennessine-293 and tennessine-294.


Applications


Disinfectants

Both chlorine and bromine are used as disinfectants for drinking water, swimming pools, fresh wounds, spas, dishes, and surfaces. They kill bacteria and other potentially harmful microorganisms through a process known as Sterilization (microbiology), sterilization. Their reactivity is also put to use in Bleaching agent, bleaching. Sodium hypochlorite, which is produced from chlorine, is the active ingredient of most Cloth, fabric bleaches, and chlorine-derived bleaches are used in the production of some paper products.


Lighting

Halogen lamps are a type of incandescent lamp using a tungsten filament in bulbs that have small amounts of a halogen, such as iodine or bromine added. This enables the production of lamps that are much smaller than non-halogen incandescent lightbulbs at the same wattage. The gas reduces the thinning of the filament and blackening of the inside of the bulb resulting in a bulb that has a much greater life. Halogen lamps glow at a higher temperature (2800 to 3400 kelvin) with a whiter colour than other incandescent bulbs. However, this requires bulbs to be manufactured from fused quartz rather than silica glass to reduce breakage.


Drug components

In drug discovery, the incorporation of halogen atoms into a lead drug candidate results in analogues that are usually more lipophilic and less water-soluble. As a consequence, halogen atoms are used to improve penetration through lipid membranes and tissues. It follows that there is a tendency for some halogenated drugs to accumulate in adipose tissue. The chemical reactivity of halogen atoms depends on both their point of attachment to the lead and the nature of the halogen. Aromatic halogen groups are far less reactive than aliphatic halogen groups, which can exhibit considerable chemical reactivity. For aliphatic carbon-halogen bonds, the C-F bond is the strongest and usually less chemically reactive than aliphatic C-H bonds. The other aliphatic-halogen bonds are weaker, their reactivity increasing down the periodic table. They are usually more chemically reactive than aliphatic C-H bonds. As a consequence, the most common halogen substitutions are the less reactive aromatic fluorine and chlorine groups.


Biological role

Fluoride anions are found in ivory, bones, teeth, blood, eggs, urine, and hair of organisms. Fluoride anions in very small amounts may be essential for humans. There are 0.5 milligrams of fluorine per liter of human blood. Human bones contain 0.2 to 1.2% fluorine. Human tissue contains approximately 50 parts per billion of fluorine. A typical 70-kilogram human contains 3 to 6 grams of fluorine. Chloride anions are essential to a large number of species, humans included. The concentration of chlorine in the dry weight of cereals is 10 to 20 parts per million, while in potatoes the concentration of chloride is 0.5%. Plant growth is adversely affected by chloride levels in the soil falling below 2 parts per million. Human blood contains an average of 0.3% chlorine. Human bone typically contains 900 parts per million of chlorine. Human tissue contains approximately 0.2 to 0.5% chlorine. There is a total of 95 grams of chlorine in a typical 70-kilogram human. Some bromine in the form of the bromide anion is present in all organisms. A biological role for bromine in humans has not been proven, but some organisms contain organobromine compounds. Humans typically consume 1 to 20 milligrams of bromine per day. There are typically 5 parts per million of bromine in human blood, 7 parts per million of bromine in human bones, and 7 parts per million of bromine in human tissue. A typical 70-kilogram human contains 260 milligrams of bromine. Humans typically consume less than 100 micrograms of iodine per day. Iodine deficiency can cause intellectual disability. organoiodine chemistry, Organoiodine compounds occur in humans in some of the glands, especially the thyroid gland, as well as the stomach, epidermis (skin), epidermis, and immune system. Foods containing iodine include Cod (food), cod, oysters, Shrimp (food), shrimp, Herring (food), herring, lobsters, sunflower seeds, seaweed, and Edible mushroom, mushrooms. However, iodine is not known to have a biological role in plants. There are typically 0.06 milligrams per liter of iodine in human blood, 300 parts per billion of iodine in human bones, and 50 to 700 parts per billion of iodine in human tissue. There are 10 to 20 milligrams of iodine in a typical 70-kilogram human. Astatine, although very scarce, has been found in micrograms in the earth. It has no known biological role because of its high radioactivity, extreme rarity, and has a half-life of just about 8 hours for the most stable isotope. Tennessine is purely man-made and has no other roles in nature.


Toxicity

The halogens tend to decrease in toxicity towards the heavier halogens. Fluorine gas is extremely toxic; breathing in fluorine at a concentration of 25 parts per million is potentially lethal. Hydrofluoric acid is also toxic, being able to penetrate skin and cause Hydrofluoric acid burn, highly painful burns. In addition, fluoride anions are toxic, but not as toxic as pure fluorine. Fluoride can be lethal in amounts of 5 to 10 grams. Prolonged consumption of fluoride above concentrations of 1.5 mg/L is associated with a risk of dental fluorosis, an aesthetic condition of the teeth. At concentrations above 4 mg/L, there is an increased risk of developing skeletal fluorosis, a condition in which bone fractures become more common due to the hardening of bones. Current recommended levels in water fluoridation, a way to prevent dental caries, range from 0.7 to 1.2 mg/L to avoid the detrimental effects of fluoride while at the same time reaping the benefits. People with levels between normal levels and those required for skeletal fluorosis tend to have symptoms similar to arthritis. Chlorine gas is highly toxic. Breathing in chlorine at a concentration of 3 parts per million can rapidly cause a toxic reaction. Breathing in chlorine at a concentration of 50 parts per million is highly dangerous. Breathing in chlorine at a concentration of 500 parts per million for a few minutes is lethal. In addition, breathing in chlorine gas is highly painful because of its corrosive properties. Hydrochloric acid is the acid of chlorine, while relatively nontoxic, it is highly corrosive and releases very irritating and toxic hydrogen chloride gas in open air. Pure bromine is somewhat toxic but less toxic than fluorine and chlorine. One hundred milligrams of bromine is lethal. Bromide anions are also toxic, but less so than bromine. Bromide has a lethal dose of 30 grams. Iodine is somewhat toxic, being able to irritate the lungs and eyes, with a safety limit of 1 milligram per cubic meter. When taken orally, 3 grams of iodine can be lethal. Iodide anions are mostly nontoxic, but these can also be deadly if ingested in large amounts. Astatine is
radioactive Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is conside ...
and thus highly dangerous, but it has not been produced in macroscopic quantities and hence it is most unlikely that its toxicity will be of much relevance to the average individual. Tennessine cannot be chemically investigated due to how short its half-life is, although its radioactivity would make it very dangerous.


Superhalogen

Certain aluminium clusters have superatom properties. These aluminium clusters are generated as anions ( with ''n'' = 1, 2, 3, ... ) in helium gas and reacted with a gas containing iodine. When analyzed by mass spectrometry one main reaction product turns out to be . These clusters of 13 aluminium atoms with an extra electron added do not appear to react with oxygen when it is introduced in the same gas stream. Assuming each atom liberates its 3 valence electrons, this means 40 electrons are present, which is one of the magic numbers for sodium and implies that these numbers are a reflection of the noble gases. Calculations show that the additional electron is located in the aluminium cluster at the location directly opposite from the iodine atom. The cluster must therefore have a higher electron affinity for the electron than iodine and therefore the aluminium cluster is called a superhalogen (i.e., the vertical electron detachment energies of the moieties that make up the negative ions are larger than those of any halogen atom). The cluster component in the ion is similar to an iodide ion or a bromide ion. The related cluster is expected to behave chemically like the triiodide ion.


See also

* Halogen bond * Halogen addition reaction * Halogen lamp * Halogenation * Interhalogen * Pseudohalogen


Notes


References


Bibliography

* {{Authority control Halogens, Groups (periodic table)