HOME

TheInfoList



OR:

In materials science, fast ion conductors are solid conductors with highly mobile ions. These materials are important in the area of solid state ionics, and are also known as solid electrolytes and superionic conductors. These materials are useful in batteries and various sensors. Fast ion conductors are used primarily in solid oxide fuel cells. As solid electrolytes they allow the movement of ions without the need for a liquid or soft membrane separating the electrodes. The phenomenon relies on the hopping of ions through an otherwise rigid crystal structure.


Mechanism

Fast ion conductors are intermediate in nature between crystalline solids which possess a regular structure with immobile ions, and liquid
electrolyte An electrolyte is a medium containing ions that is electrically conducting through the movement of those ions, but not conducting electrons. This includes most soluble salts, acids, and bases dissolved in a polar solvent, such as water. Upon dis ...
s which have no regular structure and fully mobile ions. Solid electrolytes find use in all solid-state
supercapacitor A supercapacitor (SC), also called an ultracapacitor, is a high-capacity capacitor, with a capacitance value much higher than other capacitors but with lower voltage limits. It bridges the gap between electrolytic capacitors and rechargeable ba ...
s,
batteries Battery most often refers to: * Electric battery, a device that provides electrical power * Battery (crime), a crime involving unlawful physical contact Battery may also refer to: Energy source *Automotive battery, a device to provide power t ...
, and
fuel cell A fuel cell is an electrochemical cell that converts the chemical energy of a fuel (often hydrogen) and an oxidizing agent (often oxygen) into electricity through a pair of redox reactions. Fuel cells are different from most batteries in requ ...
s, and in various kinds of
chemical sensor A sensor is a device that produces an output signal for the purpose of sensing a physical phenomenon. In the broadest definition, a sensor is a device, module, machine, or subsystem that detects events or changes in its environment and sends ...
s.


Classification

In solid electrolytes (glasses or crystals), the ionic conductivity σi can be any value, but it should be much larger than the electronic one. Usually, solids where σi is on the order of 0.0001 to 0.1 Ω−1 cm−1 (300 K) are called superionic conductors.


Proton conductors

Proton conductors are a special class of solid electrolytes, where hydrogen ions act as charge carriers. One notable example is superionic water.


Superionic conductors

Superionic conductors where σi is more than 0.1 Ω−1 cm−1 (300 K) and the activation energy for ion transport ''E''i is small (about 0.1 eV), are called
advanced superionic conductor An advanced superionic conductor (AdSIC) in materials science, is fast ion conductor that has a crystal structure close to optimal for fast ion transport (FIT). History The term was introduced in a paper by A.L. Despotuli, A.V. Andreeva and B ...
s. The most famous example of advanced superionic conductor-solid electrolyte is RbAg4I5 where σi > 0.25 Ω−1 cm−1 and σe ~10−9 Ω−1 cm−1 at 300 K. The Hall (drift) ionic mobility in RbAg4I5 is about 2 cm2/(V•s) at room temperatures. The σe – σi systematic diagram distinguishing the different types of solid-state ionic conductors is given in the figure. No clear examples have been described as yet, of fast ion conductors in the hypothetical advanced superionic conductors class (areas 7 and 8 in the classification plot). However, in crystal structure of several superionic conductors, e.g. in the minerals of the pearceite-polybasite group, the large structural fragments with activation energy of ion transport ''E''i < ''k''BT (300 К) had been discovered in 2006.


Examples


Zirconia-based materials

A common solid electrolyte is yttria-stabilized zirconia, YSZ. This material is prepared by doping Y2O3 into ZrO2. Oxide ions typically migrate only slowly in solid Y2O3 and in ZrO2, but in YSZ, the conductivity of oxide increases dramatically. These materials are used to allow oxygen to move through the solid in certain kinds of fuel cells. Zirconium dioxide can also be doped with calcium oxide to give an oxide conductor that is used in
oxygen sensor An oxygen sensor (or lambda sensor, where lambda refers to air–fuel equivalence ratio, usually denoted by λ) or probe or sond, is an electronic device that measures the proportion of oxygen (O2) in the gas or liquid being analysed. It was ...
s in automobile controls. Upon doping only a few percent, the diffusion constant of oxide increases by a factor of ~1000. Other conductive ceramics function as ion conductors. One example is NASICON, (Na3Zr2Si2PO12), a sodium super-ionic conductor


beta-Alumina

Another example of a popular fast ion conductor is beta-alumina solid electrolyte. Unlike the usual forms of alumina, this modification has a layered structure with open galleries separated by pillars. Sodium ions (Na+) migrate through this material readily since the oxide framework provides an ionophilic, non-reducible medium. This material is considered as the sodium ion conductor for the sodium–sulfur battery.


Fluoride ion conductors

Lanthanum trifluoride (LaF3) is conductive for F ions, used in some ion selective electrodes. Beta-lead fluoride exhibits a continuous growth of conductivity on heating. This property was first discovered by Michael Faraday.


Iodides

A textbook example of a fast ion conductor is
silver iodide Silver iodide is an inorganic compound with the formula Ag I. The compound is a bright yellow solid, but samples almost always contain impurities of metallic silver that give a gray coloration. The silver contamination arises because AgI is hig ...
(AgI). Upon heating the solid to 146 °C, this material adopts the alpha-polymorph. In this form, the iodide ions form a rigid cubic framework, and the Ag+ centers are molten. The electrical conductivity of the solid increases by 4000x. Similar behavior is observed for copper(I) iodide (CuI), rubidium silver iodide (RbAg4I5), and Ag2HgI4.


Other Inorganic materials

*
Silver sulfide Silver sulfide is an inorganic compound with the formula . A dense black solid, it is the only sulfide of silver. It is useful as a photosensitizer in photography. It constitutes the tarnish that forms over time on silverware and other silver obje ...
, conductive for Ag+ ions, used in some ion selective electrodes * Lead(II) chloride, conductive at higher temperatures *Some perovskite ceramics –
strontium titanate Strontium titanate is an oxide of strontium and titanium with the chemical formula Sr Ti O3. At room temperature, it is a centrosymmetric paraelectric material with a perovskite structure. At low temperatures it approaches a ferroelectric phase ...
,
strontium stannate Strontium is the chemical element with the symbol Sr and atomic number 38. An alkaline earth metal, strontium is a soft silver-white yellowish metallic element that is highly chemically reactive. The metal forms a dark oxide layer when it is ...
– conductive for O2− ions *Zr(HPO4)2.\mathitH2O – conductive for H+ ions *UO2HPO4.4H2O (hydrogen uranyl phosphate tetrahydrate) – conductive for H+ ions * Cerium(IV) oxide – conductive for O2− ions


Organic materials

*Many gels, such polyacrylamides,
agar Agar ( or ), or agar-agar, is a jelly-like substance consisting of polysaccharides obtained from the cell walls of some species of red algae, primarily from ogonori (''Gracilaria'') and "tengusa" (''Gelidiaceae''). As found in nature, agar is ...
, etc. are fast ion conductors *A salt dissolved in a polymer – e.g. lithium perchlorate in polyethylene oxide * Polyelectrolytes and Ionomers – e.g. Nafion, a H+ conductor


History

The important case of fast ionic conduction is one in a surface space-charge layer of ionic crystals. Such conduction was first predicted by Kurt Lehovec. As a space-charge layer has nanometer thickness, the effect is directly related to nanoionics (nanoionics-I). Lehovec's effect is used as a basis for developing nanomaterials for portable lithium batteries and fuel cells.


See also

*
Mixed conductor Mixed conductors, also known as mixed ion-electron conductors (MIEC), are a single-phase material that has significant conduction ionically and electronically. Due to the mixed conduction, a formally neutral species can transport in a solid and th ...


References

{{Authority control Electric and magnetic fields in matter Electrochemical concepts