In
mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, a function from a
set to a set assigns to each element of exactly one element of .
[; the words map, mapping, transformation, correspondence, and operator are often used synonymously.] The set is called the
domain of the function and the set is called the
codomain of the function.
[Codomain ''Encyclopedia of Mathematics']
Codomain. ''Encyclopedia of Mathematics''
/ref>
The earliest known approach to the notion of function can be traced back to works of Persian mathematicians Al-Biruni and Sharaf al-Din al-Tusi. Functions were originally the idealization of how a varying quantity depends on another quantity. For example, the position of a planet is a ''function'' of time. Historically
History (derived ) is the systematic study and the documentation of the human activity. The time period of event before the invention of writing systems is considered prehistory. "History" is an umbrella term comprising past events as well ...
, the concept was elaborated with the infinitesimal calculus
Calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithm ...
at the end of the 17th century, and, until the 19th century, the functions that were considered were differentiable (that is, they had a high degree of regularity). The concept of a function was formalized at the end of the 19th century in terms of set theory, and this greatly enlarged the domains of application of the concept.
A function is most often denoted by letters such as , and , and the value of a function at an element of its domain is denoted by ; the numerical value resulting from the ''function evaluation'' at a particular input value is denoted by replacing with this value; for example, the value of at is denoted by . When the function is not named and is represented by an expression , the value of the function at, say, may be denoted by . For example, the value at of the function that maps to may be denoted by (which results in
A function is uniquely represented by the set of all pairs , called the '' graph of the function'', a popular means of illustrating the function.[This definition of "graph" refers to a ''set'' of pairs of objects. Graphs, in the sense of ''diagrams'', are most applicable to functions from the real numbers to themselves. All functions can be described by sets of pairs but it may not be practical to construct a diagram for functions between other sets (such as sets of matrices).] When the domain and the codomain are sets of real numbers, each such pair may be thought of as the Cartesian coordinates
A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured in t ...
of a point in the plane.
Functions are widely used in science, engineering, and in most fields of mathematics. It has been said that functions are "the central objects of investigation" in most fields of mathematics.
Definition
A function from a set to a set is an assignment of an element of to each element of . The set is called the domain of the function and the set is called the codomain of the function.
A function, its domain, and its codomain, are declared by the notation , and the value of a function at an element of , denoted by , is called the ''image'' of under , or the ''value'' of applied to the ''argument'' .
Functions are also called '' maps'' or ''mappings'', though some authors make some distinction between "maps" and "functions" (see ).
Two functions and are equal if their domain and codomain sets are the same and their output values agree on the whole domain. More formally, given and , we have if and only if for all .[This follows from the axiom of extensionality, which says two sets are the same if and only if they have the same members. Some authors drop codomain from a definition of a function, and in that definition, the notion of equality has to be handled with care; see, for example, ]
The domain and codomain are not always explicitly given when a function is defined, and, without some (possibly difficult) computation, one might only know that the domain is contained in a larger set. Typically, this occurs in mathematical analysis, where "a function often refers to a function that may have a proper subset[called the ''domain of definition'' by some authors, notably computer science] of as domain. For example, a "function from the reals to the reals" may refer to a real-valued function of a real variable. However, a "function from the reals to the reals" does not mean that the domain of the function is the whole set of the real numbers, but only that the domain is a set of real numbers that contains a non-empty open interval
In mathematics, a (real) interval is a set of real numbers that contains all real numbers lying between any two numbers of the set. For example, the set of numbers satisfying is an interval which contains , , and all numbers in between. Other ...
. Such a function is then called a partial function. For example, if is a function that has the real numbers as domain and codomain, then a function mapping the value to the value is a function from the reals to the reals, whose domain is the set of the reals , such that .
The range or image
An image is a visual representation of something. It can be two-dimensional, three-dimensional, or somehow otherwise feed into the visual system to convey information. An image can be an artifact, such as a photograph or other two-dimensiona ...
of a function is the set of the images of all elements in the domain.
Total, univalent relation
Any subset of the Cartesian product
In mathematics, specifically set theory, the Cartesian product of two sets ''A'' and ''B'', denoted ''A''×''B'', is the set of all ordered pairs where ''a'' is in ''A'' and ''b'' is in ''B''. In terms of set-builder notation, that is
: A\ti ...
of two sets and defines a binary relation
In mathematics, a binary relation associates elements of one set, called the ''domain'', with elements of another set, called the ''codomain''. A binary relation over Set (mathematics), sets and is a new set of ordered pairs consisting of ele ...
between these two sets. It is immediate that an arbitrary relation may contain pairs that violate the necessary conditions for a function given above.
A binary relation is univalent (also called right-unique) if
:
A binary relation is total
Total may refer to:
Mathematics
* Total, the summation of a set of numbers
* Total order, a partial order without incomparable pairs
* Total relation, which may also mean
** connected relation (a binary relation in which any two elements are comp ...
if
:
A partial function is a binary relation that is univalent, and a function is a binary relation that is univalent and total.
Various properties of functions and function composition may be reformulated in the language of relations.[ Gunther Schmidt( 2011) ''Relational Mathematics'', Encyclopedia of Mathematics and its Applications, vol. 132, sect 5.1 Functions, pp. 49–60, Cambridge University Press ] For example, a function is injective
In mathematics, an injective function (also known as injection, or one-to-one function) is a function that maps distinct elements of its domain to distinct elements; that is, implies . (Equivalently, implies in the equivalent contrapositiv ...
if the converse relation is univalent, where the converse relation is defined as
Set exponentiation
The set of all functions from a set to a set is commonly denoted as
:
which is read as ''to the power'' .
This notation is the same as the notation for the Cartesian product
In mathematics, specifically set theory, the Cartesian product of two sets ''A'' and ''B'', denoted ''A''×''B'', is the set of all ordered pairs where ''a'' is in ''A'' and ''b'' is in ''B''. In terms of set-builder notation, that is
: A\ti ...
of a family of copies of indexed by :
:
The identity of these two notations is motivated by the fact that a function can be identified with the element of the Cartesian product such that the component of index is .
When has two elements, is commonly denoted and called the powerset
In mathematics, the power set (or powerset) of a set is the set of all subsets of , including the empty set and itself. In axiomatic set theory (as developed, for example, in the ZFC axioms), the existence of the power set of any set is postu ...
of . It can be identified with the set of all subset
In mathematics, Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are ...
s of , through the one-to-one correspondence that associates to each subset the function such that if and otherwise.
Notation
There are various standard ways for denoting functions. The most commonly used notation is functional notation, which is the first notation described below.
Functional notation
In functional notation, the function is immediately given a name, such as , and its definition is given by what does to the explicit argument , using a formula in terms of . For example, the function which takes a real number as input and outputs that number plus 1 is denoted by
:.
If a function is defined in this notation, its domain and codomain are implicitly taken to both be , the set of real numbers. If the formula cannot be evaluated at all real numbers, then the domain is implicitly taken to be the maximal subset of on which the formula can be evaluated; see Domain of a function.
A more complicated example is the function
:.
In this example, the function takes a real number as input, squares it, then adds 1 to the result, then takes the sine of the result, and returns the final result as the output.
When the symbol denoting the function consists of several characters and no ambiguity may arise, the parentheses of functional notation might be omitted. For example, it is common to write instead of .
Functional notation was first used by Leonhard Euler in 1734. Some widely used functions are represented by a symbol consisting of several letters (usually two or three, generally an abbreviation of their name). In this case, a roman type
In Latin script typography, roman is one of the three main kinds of historical type, alongside blackletter and italic. Roman type was modelled from a European scribal manuscript style of the 15th century, based on the pairing of inscriptional ...
is customarily used instead, such as "" for the sine function
In mathematics, sine and cosine are trigonometric functions of an angle. The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is opp ...
, in contrast to italic font for single-letter symbols.
When using this notation, one often encounters the abuse of notation whereby the notation can refer to the value of at , or to the function itself. If the variable was previously declared, then the notation unambiguously means the value of at . Otherwise, it is useful to understand the notation as being both simultaneously; this allows one to denote composition of two functions and in a succinct manner by the notation .
However, distinguishing and can become important in cases where functions themselves serve as inputs for other functions. (A function taking another function as an input is termed a ''functional
Functional may refer to:
* Movements in architecture:
** Functionalism (architecture)
** Form follows function
* Functional group, combination of atoms within molecules
* Medical conditions without currently visible organic basis:
** Functional sy ...
''.) Other approaches of notating functions, detailed below, avoid this problem but are less commonly used.
Arrow notation
Arrow notation defines the rule of a function inline, without requiring a name to be given to the function. For example, is the function which takes a real number as input and outputs that number plus 1. Again a domain and codomain of is implied.
The domain and codomain can also be explicitly stated, for example:
:
This defines a function from the integers to the integers that returns the square of its input.
As a common application of the arrow notation, suppose is a function in two variables, and we want to refer to a partially applied function produced by fixing the second argument to the value without introducing a new function name. The map in question could be denoted using the arrow notation. The expression (read: "the map taking to ") represents this new function with just one argument, whereas the expression refers to the value of the function at the
Index notation
Index notation is often used instead of functional notation. That is, instead of writing , one writes
This is typically the case for functions whose domain is the set of the natural numbers. Such a function is called a sequence, and, in this case the element is called the th element of the sequence.
The index notation is also often used for distinguishing some variables called parameters from the "true variables". In fact, parameters are specific variables that are considered as being fixed during the study of a problem. For example, the map (see above) would be denoted using index notation, if we define the collection of maps by the formula for all .
Dot notation
In the notation
the symbol does not represent any value, it is simply a placeholder meaning that, if is replaced by any value on the left of the arrow, it should be replaced by the same value on the right of the arrow. Therefore, may be replaced by any symbol, often an interpunct
An interpunct , also known as an interpoint, middle dot, middot and centered dot or centred dot, is a punctuation mark consisting of a vertically centered dot used for interword separation in ancient Latin script. (Word-separating spaces did no ...
"". This may be useful for distinguishing the function from its value at .
For example, may stand for the function , and may stand for a function defined by an integral with variable upper bound: .
Specialized notations
There are other, specialized notations for functions in sub-disciplines of mathematics. For example, in linear algebra and functional analysis, linear form
In mathematics, a linear form (also known as a linear functional, a one-form, or a covector) is a linear map from a vector space to its field of scalars (often, the real numbers or the complex numbers).
If is a vector space over a field , the s ...
s and the vectors they act upon are denoted using a dual pair to show the underlying duality
Duality may refer to:
Mathematics
* Duality (mathematics), a mathematical concept
** Dual (category theory), a formalization of mathematical duality
** Duality (optimization)
** Duality (order theory), a concept regarding binary relations
** Dual ...
. This is similar to the use of bra–ket notation
In quantum mechanics, bra–ket notation, or Dirac notation, is used ubiquitously to denote quantum states. The notation uses angle brackets, and , and a vertical bar , to construct "bras" and "kets".
A ket is of the form , v \rangle. Mathema ...
in quantum mechanics. In logic and the theory of computation, the function notation of lambda calculus
Lambda calculus (also written as ''λ''-calculus) is a formal system in mathematical logic for expressing computation based on function abstraction and application using variable binding and substitution. It is a universal model of computation ...
is used to explicitly express the basic notions of function abstraction and application
Application may refer to:
Mathematics and computing
* Application software, computer software designed to help the user to perform specific tasks
** Application layer, an abstraction layer that specifies protocols and interface methods used in a c ...
. In category theory
Category theory is a general theory of mathematical structures and their relations that was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Nowadays, cate ...
and homological algebra
Homological algebra is the branch of mathematics that studies homology (mathematics), homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology (a precurs ...
, networks of functions are described in terms of how they and their compositions commute with each other using commutative diagram
350px, The commutative diagram used in the proof of the five lemma.
In mathematics, and especially in category theory, a commutative diagram is a diagram such that all directed paths in the diagram with the same start and endpoints lead to the s ...
s that extend and generalize the arrow notation for functions described above.
Other terms
A function is often also called a map or a mapping, but some authors make a distinction between the term "map" and "function". For example, the term "map" is often reserved for a "function" with some sort of special structure (e.g. maps of manifolds). In particular ''map'' is often used in place of ''homomorphism'' for the sake of succinctness (e.g., linear map or ''map from to '' instead of '' group homomorphism from to ''). Some authors reserve the word ''mapping'' for the case where the structure of the codomain belongs explicitly to the definition of the function.
Some authors, such as Serge Lang
Serge Lang (; May 19, 1927 – September 12, 2005) was a French-American mathematician and activist who taught at Yale University for most of his career. He is known for his work in number theory and for his mathematics textbooks, including the i ...
, use "function" only to refer to maps for which the codomain is a subset of the real or complex numbers, and use the term ''mapping'' for more general functions.
In the theory of dynamical systems, a map denotes an evolution function used to create discrete dynamical systems. See also Poincaré map
In mathematics, particularly in dynamical systems, a first recurrence map or Poincaré map, named after Henri Poincaré, is the intersection of a periodic orbit in the state space of a continuous dynamical system with a certain lower-dimensional ...
.
Whichever definition of ''map'' is used, related terms like '' domain'', '' codomain'', ''injective
In mathematics, an injective function (also known as injection, or one-to-one function) is a function that maps distinct elements of its domain to distinct elements; that is, implies . (Equivalently, implies in the equivalent contrapositiv ...
'', '' continuous'' have the same meaning as for a function.
Specifying a function
Given a function , by definition, to each element of the domain of the function , there is a unique element associated to it, the value of at . There are several ways to specify or describe how is related to , both explicitly and implicitly. Sometimes, a theorem or an axiom
An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy or f ...
asserts the existence of a function having some properties, without describing it more precisely. Often, the specification or description is referred to as the definition of the function .
By listing function values
On a finite set, a function may be defined by listing the elements of the codomain that are associated to the elements of the domain. For example, if , then one can define a function by
By a formula
Functions are often defined by a formula
In science, a formula is a concise way of expressing information symbolically, as in a mathematical formula or a ''chemical formula''. The informal use of the term ''formula'' in science refers to the general construct of a relationship betwee ...
that describes a combination of arithmetic operations and previously defined functions; such a formula allows computing the value of the function from the value of any element of the domain.
For example, in the above example, can be defined by the formula , for .
When a function is defined this way, the determination of its domain is sometimes difficult. If the formula that defines the function contains divisions, the values of the variable for which a denominator is zero must be excluded from the domain; thus, for a complicated function, the determination of the domain passes through the computation of the zeros of auxiliary functions. Similarly, if square roots occur in the definition of a function from to the domain is included in the set of the values of the variable for which the arguments of the square roots are nonnegative.
For example, defines a function whose domain is because is always positive if is a real number. On the other hand, defines a function from the reals to the reals whose domain is reduced to the interval . (In old texts, such a domain was called the ''domain of definition'' of the function.)
Functions are often classified by the nature of formulas that define them:
*A quadratic function
In mathematics, a quadratic polynomial is a polynomial of degree two in one or more variables. A quadratic function is the polynomial function defined by a quadratic polynomial. Before 20th century, the distinction was unclear between a polynomial ...
is a function that may be written where are constants
Constant or The Constant may refer to:
Mathematics
* Constant (mathematics), a non-varying value
* Mathematical constant, a special number that arises naturally in mathematics, such as or
Other concepts
* Control variable or scientific const ...
.
*More generally, a polynomial function
In mathematics, a polynomial is an expression (mathematics), expression consisting of indeterminate (variable), indeterminates (also called variable (mathematics), variables) and coefficients, that involves only the operations of addition, subtrac ...
is a function that can be defined by a formula involving only additions, subtractions, multiplications, and exponentiation to nonnegative integers. For example, and
*A rational function
In mathematics, a rational function is any function that can be defined by a rational fraction, which is an algebraic fraction such that both the numerator and the denominator are polynomials. The coefficients of the polynomials need not be rat ...
is the same, with divisions also allowed, such as and
*An algebraic function is the same, with th roots and roots of polynomials also allowed.
*An elementary function[Here "elementary" has not exactly its common sense: although most functions that are encountered in elementary courses of mathematics are elementary in this sense, some elementary functions are not elementary for the common sense, for example, those that involve roots of polynomials of high degree.] is the same, with logarithms and exponential functions allowed.
Inverse and implicit functions
A function with domain and codomain , is bijective, if for every in , there is one and only one element in such that . In this case, the inverse function of is the function that maps to the element such that . For example, the natural logarithm
The natural logarithm of a number is its logarithm to the base of the mathematical constant , which is an irrational and transcendental number approximately equal to . The natural logarithm of is generally written as , , or sometimes, if ...
is a bijective function from the positive real numbers to the real numbers. It thus has an inverse, called the exponential function, that maps the real numbers onto the positive numbers.
If a function is not bijective, it may occur that one can select subsets and such that the restriction
Restriction, restrict or restrictor may refer to:
Science and technology
* restrict, a keyword in the C programming language used in pointer declarations
* Restriction enzyme, a type of enzyme that cleaves genetic material
Mathematics and log ...
of to is a bijection from to , and has thus an inverse. The inverse trigonometric functions are defined this way. For example, the cosine function
In mathematics, sine and cosine are trigonometric functions of an angle. The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is oppo ...
induces, by restriction, a bijection from the interval onto the interval , and its inverse function, called arccosine, maps onto . The other inverse trigonometric functions are defined similarly.
More generally, given a binary relation
In mathematics, a binary relation associates elements of one set, called the ''domain'', with elements of another set, called the ''codomain''. A binary relation over Set (mathematics), sets and is a new set of ordered pairs consisting of ele ...
between two sets and , let be a subset of such that, for every there is some such that . If one has a criterion allowing selecting such an for every this defines a function called an implicit function, because it is implicitly defined by the relation .
For example, the equation of the unit circle defines a relation on real numbers. If there are two possible values of , one positive and one negative. For , these two values become both equal to 0. Otherwise, there is no possible value of . This means that the equation defines two implicit functions with domain and respective codomains and .
In this example, the equation can be solved in , giving but, in more complicated examples, this is impossible. For example, the relation defines as an implicit function of , called the Bring radical, which has as domain and range. The Bring radical cannot be expressed in terms of the four arithmetic operations and th roots.
The implicit function theorem provides mild differentiability conditions for existence and uniqueness of an implicit function in the neighborhood of a point.
Using differential calculus
Many functions can be defined as the antiderivative of another function. This is the case of the natural logarithm
The natural logarithm of a number is its logarithm to the base of the mathematical constant , which is an irrational and transcendental number approximately equal to . The natural logarithm of is generally written as , , or sometimes, if ...
, which is the antiderivative of that is 0 for . Another common example is the error function
In mathematics, the error function (also called the Gauss error function), often denoted by , is a complex function of a complex variable defined as:
:\operatorname z = \frac\int_0^z e^\,\mathrm dt.
This integral is a special (non-elementary ...
.
More generally, many functions, including most special functions, can be defined as solutions of differential equations. The simplest example is probably the exponential function, which can be defined as the unique function that is equal to its derivative and takes the value 1 for .
Power series can be used to define functions on the domain in which they converge. For example, the exponential function is given by . However, as the coefficients of a series are quite arbitrary, a function that is the sum of a convergent series is generally defined otherwise, and the sequence of the coefficients is the result of some computation based on another definition. Then, the power series can be used to enlarge the domain of the function. Typically, if a function for a real variable is the sum of its Taylor series in some interval, this power series allows immediately enlarging the domain to a subset of the complex numbers, the disc of convergence of the series. Then analytic continuation allows enlarging further the domain for including almost the whole complex plane
In mathematics, the complex plane is the plane formed by the complex numbers, with a Cartesian coordinate system such that the -axis, called the real axis, is formed by the real numbers, and the -axis, called the imaginary axis, is formed by the ...
. This process is the method that is generally used for defining the logarithm, the exponential and the trigonometric functions of a complex number.
By recurrence
Functions whose domain are the nonnegative integers, known as sequences, are often defined by recurrence relations.
The factorial
In mathematics, the factorial of a non-negative denoted is the product of all positive integers less than or equal The factorial also equals the product of n with the next smaller factorial:
\begin
n! &= n \times (n-1) \times (n-2) \t ...
function on the nonnegative integers () is a basic example, as it can be defined by the recurrence relation
:
and the initial condition
:
Representing a function
A graph is commonly used to give an intuitive picture of a function. As an example of how a graph helps to understand a function, it is easy to see from its graph whether a function is increasing or decreasing. Some functions may also be represented by bar charts.
Graphs and plots
Given a function its ''graph'' is, formally, the set
:
In the frequent case where and are subsets of the real numbers (or may be identified with such subsets, e.g. intervals), an element may be identified with a point having coordinates in a 2-dimensional coordinate system, e.g. the Cartesian plane. Parts of this may create a plot
Plot or Plotting may refer to:
Art, media and entertainment
* Plot (narrative), the story of a piece of fiction
Music
* ''The Plot'' (album), a 1976 album by jazz trumpeter Enrico Rava
* The Plot (band), a band formed in 2003
Other
* ''Plot ...
that represents (parts of) the function. The use of plots is so ubiquitous that they too are called the ''graph of the function''. Graphic representations of functions are also possible in other coordinate systems. For example, the graph of the square function
:
consisting of all points with coordinates for yields, when depicted in Cartesian coordinates, the well known parabola. If the same quadratic function with the same formal graph, consisting of pairs of numbers, is plotted instead in polar coordinates the plot obtained is Fermat's spiral.
Tables
A function can be represented as a table of values. If the domain of a function is finite, then the function can be completely specified in this way. For example, the multiplication function defined as can be represented by the familiar multiplication table
On the other hand, if a function's domain is continuous, a table can give the values of the function at specific values of the domain. If an intermediate value is needed, interpolation
In the mathematical field of numerical analysis, interpolation is a type of estimation, a method of constructing (finding) new data points based on the range of a discrete set of known data points.
In engineering and science, one often has a n ...
can be used to estimate the value of the function. For example, a portion of a table for the sine function might be given as follows, with values rounded to 6 decimal places:
Before the advent of handheld calculators and personal computers, such tables were often compiled and published for functions such as logarithms and trigonometric functions.
Bar chart
Bar charts are often used for representing functions whose domain is a finite set, the natural numbers, or the integers. In this case, an element of the domain is represented by an interval of the -axis, and the corresponding value of the function, , is represented by a rectangle
In Euclidean plane geometry, a rectangle is a quadrilateral with four right angles. It can also be defined as: an equiangular quadrilateral, since equiangular means that all of its angles are equal (360°/4 = 90°); or a parallelogram containi ...
whose base is the interval corresponding to and whose height is (possibly negative, in which case the bar extends below the -axis).
General properties
This section describes general properties of functions, that are independent of specific properties of the domain and the codomain.
Standard functions
There are a number of standard functions that occur frequently:
* For every set , there is a unique function, called the , or empty map, from the empty set
In mathematics, the empty set is the unique set having no elements; its size or cardinality (count of elements in a set) is zero. Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set, while in other ...
to . The graph of an empty function is the empty set.[By definition, the graph of the empty function to is a subset of the Cartesian product , and this product is empty.] The existence of empty functions is needed both for the coherency of the theory and for avoiding exceptions concerning the empty set in many statements. Under the usual set-theoretic definition of a function as an ordered triplet (or equivalent ones), there is exactly one empty function for each set, thus the empty function is not equal to if and only if , although their graph are both the empty set
In mathematics, the empty set is the unique set having no elements; its size or cardinality (count of elements in a set) is zero. Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set, while in other ...
.
* For every set and every singleton set , there is a unique function from to , which maps every element of to . This is a surjection (see below) unless is the empty set.
* Given a function the ''canonical surjection'' of onto its image is the function from to that maps to .
* For every subset
In mathematics, Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are ...
of a set , the inclusion map of into is the injective (see below) function that maps every element of to itself.
* The identity function on a set , often denoted by , is the inclusion of into itself.
Function composition
Given two functions and such that the domain of is the codomain of , their ''composition'' is the function defined by
:
That is, the value of is obtained by first applying to to obtain and then applying to the result to obtain . In the notation the function that is applied first is always written on the right.
The composition is an operation on functions that is defined only if the codomain of the first function is the domain of the second one. Even when both and satisfy these conditions, the composition is not necessarily commutative, that is, the functions and need not be equal, but may deliver different values for the same argument. For example, let and , then and agree just for
The function composition is associative
In mathematics, the associative property is a property of some binary operations, which means that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement f ...
in the sense that, if one of and is defined, then the other is also defined, and they are equal. Thus, one writes
:
The identity functions and are respectively a right identity and a left identity
In mathematics, an identity element, or neutral element, of a binary operation operating on a set is an element of the set that leaves unchanged every element of the set when the operation is applied. This concept is used in algebraic structures ...
for functions from to . That is, if is a function with domain , and codomain , one has
File:Function machine5.svg, A composite function ''g''(''f''(''x'')) can be visualized as the combination of two "machines".
File:Example for a composition of two functions.svg, A simple example of a function composition
File:Compfun.svg, Another composition. In this example, .
Image and preimage
Let The ''image'' under of an element of the domain is . If is any subset of , then the ''image'' of under , denoted , is the subset of the codomain consisting of all images of elements of , that is,
:
The ''image'' of is the image of the whole domain, that is, . It is also called the range of , although the term ''range'' may also refer to the codomain.[''Quantities and Units - Part 2: Mathematical signs and symbols to be used in the natural sciences and technology'', p. 15. ISO 80000-2 (ISO/IEC 2009-12-01)]
On the other hand, the '' inverse image'' or ''preimage
In mathematics, the image of a function is the set of all output values it may produce.
More generally, evaluating a given function f at each element of a given subset A of its domain produces a set, called the "image of A under (or through) ...
'' under of an element of the codomain is the set of all elements of the domain whose images under equal . In symbols, the preimage of is denoted by and is given by the equation
:
Likewise, the preimage of a subset of the codomain is the set of the preimages of the elements of , that is, it is the subset of the domain consisting of all elements of whose images belong to . It is denoted by and is given by the equation
:
For example, the preimage of under the square function is the set .
By definition of a function, the image of an element of the domain is always a single element of the codomain. However, the preimage of an element of the codomain may be empty or contain any number of elements. For example, if is the function from the integers to themselves that maps every integer to 0, then .
If is a function, and are subsets of , and and are subsets of , then one has the following properties:
*
*
*
*
*
*
The preimage by of an element of the codomain is sometimes called, in some contexts, the fiber of under .
If a function has an inverse (see below), this inverse is denoted In this case may denote either the image by or the preimage by of . This is not a problem, as these sets are equal. The notation and may be ambiguous in the case of sets that contain some subsets as elements, such as In this case, some care may be needed, for example, by using square brackets