HOME





Axiom Of Extensionality
The axiom of extensionality, also called the axiom of extent, is an axiom used in many forms of axiomatic set theory, such as Zermelo–Fraenkel set theory. The axiom defines what a Set (mathematics), set is. Informally, the axiom means that the two set (mathematics), sets ''A'' and ''B'' are equal if and only if ''A'' and ''B'' have the same members. Etymology The term ''extensionality'', as used in '''Axiom of Extensionality has its roots in logic. An intensional definition describes the necessary and sufficient conditions for a term to apply to an object. For example: "An even number is an integer which is divisible by 2." An extensional definition instead lists all objects where the term applies. For example: "An even number is any one of the following integers: 0, 2, 4, 6, 8..., -2, -4, -6, -8..." In logic, the Extension (logic), extension of a Predicate (mathematical logic), predicate is the set of all things for which the predicate is true. The logical term was introduce ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Axiom
An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy or fit' or 'that which commends itself as evident'. The precise definition varies across fields of study. In classic philosophy, an axiom is a statement that is so evident or well-established, that it is accepted without controversy or question. In modern logic, an axiom is a premise or starting point for reasoning. In mathematics, an ''axiom'' may be a " logical axiom" or a " non-logical axiom". Logical axioms are taken to be true within the system of logic they define and are often shown in symbolic form (e.g., (''A'' and ''B'') implies ''A''), while non-logical axioms are substantive assertions about the elements of the domain of a specific mathematical theory, for example ''a'' + 0 = ''a'' in integer arithmetic. N ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Russell's Paradox
In mathematical logic, Russell's paradox (also known as Russell's antinomy) is a set-theoretic paradox published by the British philosopher and mathematician, Bertrand Russell, in 1901. Russell's paradox shows that every set theory that contains an unrestricted comprehension principle leads to contradictions. According to the unrestricted comprehension principle, for any sufficiently well-defined property, there is the set of all and only the objects that have that property. Let ''R'' be the set of all sets that are not members of themselves. (This set is sometimes called "the Russell set".) If ''R'' is not a member of itself, then its definition entails that it is a member of itself; yet, if it is a member of itself, then it is not a member of itself, since it is the set of all sets that are not members of themselves. The resulting contradiction is Russell's paradox. In symbols: : Let R = \. Then R \in R \iff R \not \in R. Russell also showed that a version of the paradox co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


New Foundations
In mathematical logic, New Foundations (NF) is a non-well-founded, finitely axiomatizable set theory conceived by Willard Van Orman Quine as a simplification of the theory of types of ''Principia Mathematica''. Definition The well-formed formulas of NF are the standard formulas of propositional calculus with two primitive predicates equality (=) and membership (\in). NF can be presented with only two axiom schemata: * Extensionality: Two objects with the same elements are the same object; formally, given any set ''A'' and any set ''B'', if for every set ''X'', ''X'' is a member of ''A'' if and only if ''X'' is a member of ''B'', then ''A'' is equal to ''B''. * A restricted axiom schema of comprehension: \ exists for each stratified formula \phi. A formula \phi is said to be ''stratified'' if there exists a function ''f'' from pieces of \phi's syntax to the natural numbers, such that for any atomic subformula x \in y of \phi we have ''f''(''y'') = ''f''(''x'') + 1, whil ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Willard Van Orman Quine
Willard Van Orman Quine ( ; known to his friends as "Van"; June 25, 1908 – December 25, 2000) was an American philosopher and logician in the analytic tradition, recognized as "one of the most influential philosophers of the twentieth century". He was the Edgar Pierce Chair of Philosophy at Harvard University from 1956 to 1978. Quine was a teacher of logic and set theory. He was famous for his position that first-order logic is the only kind worthy of the name, and developed his own system of mathematics and set theory, known as New Foundations. In the philosophy of mathematics, he and his Harvard colleague Hilary Putnam developed the Quine–Putnam indispensability argument, an argument for the Philosophy of mathematics#Empiricism, reality of mathematical entities.Colyvan, Mark"Indispensability Arguments in the Philosophy of Mathematics" The Stanford Encyclopedia of Philosophy (Fall 2004 Edition), Edward N. Zalta (ed.). He was the main proponent of the view that philosophy is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Logical Biconditional
In logic and mathematics, the logical biconditional, also known as material biconditional or equivalence or bidirectional implication or biimplication or bientailment, is the logical connective used to conjoin two statements P and Q to form the statement "P if and only if Q" (often abbreviated as "P iff Q"), where P is known as the ''antecedent (logic), antecedent'', and Q the ''consequent''. Nowadays, notations to represent equivalence include \leftrightarrow,\Leftrightarrow,\equiv. P\leftrightarrow Q is logically equivalent to both (P \rightarrow Q) \land (Q \rightarrow P) and (P \land Q) \lor (\neg P \land \neg Q) , and the XNOR gate, XNOR (exclusive NOR) Logical connective, Boolean operator, which means "both or neither". Semantically, the only case where a logical biconditional is different from a material conditional is the case where the hypothesis (antecedent) is false but the conclusion (consequent) is true. In this case, the result is true for the conditional, but ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Equality (mathematics)
In mathematics, equality is a relationship between two quantities or Expression (mathematics), expressions, stating that they have the same value, or represent the same mathematical object. Equality between and is written , and read " equals ". In this equality, and are distinguished by calling them ''sides of an equation, left-hand side'' (''LHS''), and ''right-hand side'' (''RHS''). Two objects that are not equal are said to be distinct. Equality is often considered a primitive notion, meaning it is not formally defined, but rather informally said to be "a relation each thing bears to itself and nothing else". This characterization is notably circular ("nothing else"), reflecting a general conceptual difficulty in fully characterizing the concept. Basic properties about equality like Reflexive relation, reflexivity, Symmetric relation, symmetry, and Transitive relation, transitivity have been understood intuitively since at least the ancient Greeks, but were not symboli ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

First-order Logic
First-order logic, also called predicate logic, predicate calculus, or quantificational logic, is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables. Rather than propositions such as "all humans are mortal", in first-order logic one can have expressions in the form "for all ''x'', if ''x'' is a human, then ''x'' is mortal", where "for all ''x"'' is a quantifier, ''x'' is a variable, and "... ''is a human''" and "... ''is mortal''" are predicates. This distinguishes it from propositional logic, which does not use quantifiers or relations; in this sense, propositional logic is the foundation of first-order logic. A theory about a topic, such as set theory, a theory for groups,A. Tarski, ''Undecidable Theories'' (1953), p. 77. Studies in Logic and the Foundation of Mathematics, North-Holland or a formal theory o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Free Variables And Bound Variables
In mathematics, and in other disciplines involving formal languages, including mathematical logic and computer science, a variable may be said to be either free or bound. Some older books use the terms real variable and apparent variable for free variable and bound variable, respectively. A ''free variable'' is a Mathematical notation, notation (symbol) that specifies places in an expression (mathematics), expression where Substitution (logic), substitution may take place and is not a parameter of this or any container expression. The idea is related to a ''placeholder'' (a symbol that will later be replaced by some value), or a wildcard character that stands for an unspecified symbol. In computer programming, the term free variable refers to variable (programming), variables used in a function (computer science), function that are neither local variables nor parameter (computer programming), parameters of that function. The term non-local variable is often a synonym in this co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Urelement
In set theory, a branch of mathematics, an urelement or ur-element (from the German prefix ''ur-'', 'primordial') is an object that is not a set (has no elements), but that may be an element of a set. It is also referred to as an atom or individual. Ur-elements are also not identical with the empty set. Theory There are several different but essentially equivalent ways to treat urelements in a first-order theory. One way is to work in a first-order theory with two sorts, sets and urelements, with ''a'' ∈ ''b'' only defined when ''b'' is a set. In this case, if ''U'' is an urelement, it makes no sense to say X \in U, although U \in X is perfectly legitimate. Another way is to work in a one-sorted theory with a unary relation used to distinguish sets and urelements. As non-empty sets contain members while urelements do not, the unary relation is only needed to distinguish the empty set from urelements. Note that in this case, the axiom of extensionality must be formulated ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Formal Language
In logic, mathematics, computer science, and linguistics, a formal language is a set of strings whose symbols are taken from a set called "alphabet". The alphabet of a formal language consists of symbols that concatenate into strings (also called "words"). Words that belong to a particular formal language are sometimes called ''well-formed words''. A formal language is often defined by means of a formal grammar such as a regular grammar or context-free grammar. In computer science, formal languages are used, among others, as the basis for defining the grammar of programming languages and formalized versions of subsets of natural languages, in which the words of the language represent concepts that are associated with meanings or semantics. In computational complexity theory, decision problems are typically defined as formal languages, and complexity classes are defined as the sets of the formal languages that can be parsed by machines with limited computational power. In ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

John Von Neumann
John von Neumann ( ; ; December 28, 1903 – February 8, 1957) was a Hungarian and American mathematician, physicist, computer scientist and engineer. Von Neumann had perhaps the widest coverage of any mathematician of his time, integrating Basic research, pure and Applied science#Applied research, applied sciences and making major contributions to many fields, including mathematics, physics, economics, computing, and statistics. He was a pioneer in building the mathematical framework of quantum physics, in the development of functional analysis, and in game theory, introducing or codifying concepts including Cellular automaton, cellular automata, the Von Neumann universal constructor, universal constructor and the Computer, digital computer. His analysis of the structure of self-replication preceded the discovery of the structure of DNA. During World War II, von Neumann worked on the Manhattan Project. He developed the mathematical models behind the explosive lense ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Alfred Tarski
Alfred Tarski (; ; born Alfred Teitelbaum;School of Mathematics and Statistics, University of St Andrews ''School of Mathematics and Statistics, University of St Andrews''. January 14, 1901 – October 26, 1983) was a Polish-American logician and mathematician. A prolific author best known for his work on model theory, metamathematics, and algebraic logic, he also contributed to abstract algebra, topology, geometry, measure theory, mathematical logic, set theory, type theory, and analytic philosophy. Educated in Poland at the University of Warsaw, and a member of the Lwów–Warsaw school, Lwów–Warsaw school of logic and the Warsaw school of mathematics, he immigrated to the United States in 1939 where he became a naturalized citizen in 1945. Tarski taught and carried out research in mathematics at the University of California, Berkeley, from 1942 until his death in 1983.#FefA, Feferman A. His biographers Anita Burdman Feferman and Solomon Feferman state that, "Along with ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]