HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a divisor of an integer n, also called a factor of n, is an
integer An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
m that may be multiplied by some integer to produce n. In this case, one also says that n is a '' multiple'' of m. An integer n is divisible or evenly divisible by another integer m if m is a divisor of n; this implies dividing n by m leaves no remainder.


Definition

An
integer An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
n is divisible by a nonzero integer m if there exists an integer k such that n=km. This is written as : m\mid n. This may be read as that m divides n, m is a divisor of n, m is a factor of n, or n is a multiple of m. If m does not divide n, then the notation is m\not\mid n. There are two conventions, distinguished by whether m is permitted to be zero: * With the convention without an additional constraint on m, m \mid 0 for every integer m. * With the convention that m be nonzero, m \mid 0 for every nonzero integer m.


General

Divisors can be negative as well as positive, although often the term is restricted to positive divisors. For example, there are six divisors of 4; they are 1, 2, 4, −1, −2, and −4, but only the positive ones (1, 2, and 4) would usually be mentioned. 1 and −1 divide (are divisors of) every integer. Every integer (and its negation) is a divisor of itself. Integers divisible by 2 are called even, and integers not divisible by 2 are called odd. 1, −1, n and -n are known as the trivial divisors of n. A divisor of n that is not a trivial divisor is known as a non-trivial divisor (or strict divisor). A nonzero integer with at least one non-trivial divisor is known as a
composite number A composite number is a positive integer that can be formed by multiplying two smaller positive integers. Accordingly it is a positive integer that has at least one divisor other than 1 and itself. Every positive integer is composite, prime numb ...
, while the
units Unit may refer to: General measurement * Unit of measurement, a definite magnitude of a physical quantity, defined and adopted by convention or by law **International System of Units (SI), modern form of the metric system **English units, histo ...
−1 and 1 and
prime number A prime number (or a prime) is a natural number greater than 1 that is not a Product (mathematics), product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime ...
s have no non-trivial divisors. There are
divisibility rule A divisibility rule is a shorthand and useful way of determining whether a given integer is divisible by a fixed Divisor (number theory), divisor without performing the division, usually by examining its digits. Although there are divisibility test ...
s that allow one to recognize certain divisors of a number from the number's digits.


Examples

* 7 is a divisor of 42 because 7\times 6=42, so we can say 7\mid 42. It can also be said that 42 is divisible by 7, 42 is a multiple of 7, 7 divides 42, or 7 is a factor of 42. * The non-trivial divisors of 6 are 2, −2, 3, −3. * The positive divisors of 42 are 1, 2, 3, 6, 7, 14, 21, 42. * The
set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
of all positive divisors of 60, A=\, partially ordered by divisibility, has the
Hasse diagram In order theory, a Hasse diagram (; ) is a type of mathematical diagram used to represent a finite partially ordered set, in the form of a drawing of its transitive reduction. Concretely, for a partially ordered set (S,\le) one represents each ...
:


Further notions and facts

There are some elementary rules: * If a \mid b and b \mid c, then a \mid c; that is, divisibility is a
transitive relation In mathematics, a binary relation on a set (mathematics), set is transitive if, for all elements , , in , whenever relates to and to , then also relates to . Every partial order and every equivalence relation is transitive. For example ...
. * If a \mid b and b \mid a, then a = b or a = -b. (That is, a and b are associates.) * If a \mid b and a \mid c, then a \mid (b + c) holds, as does a \mid (b - c). However, if a \mid b and c \mid b, then (a + c) \mid b does ''not'' always hold (for example, 2\mid6 and 3 \mid 6 but 5 does not divide 6). * a \mid b \iff ac \mid bc for nonzero c . This follows immediately from writing ka = b \iff kac = bc . If a \mid bc, and \gcd(a, b) = 1, then a \mid c. This is called
Euclid's lemma In algebra and number theory, Euclid's lemma is a lemma that captures a fundamental property of prime numbers: For example, if , , , then , and since this is divisible by 19, the lemma implies that one or both of 133 or 143 must be as well. In ...
. If p is a prime number and p \mid ab then p \mid a or p \mid b. A positive divisor of n that is different from n is called a or an of n (for example, the proper divisors of 6 are 1, 2, and 3). A number that does not evenly divide n but leaves a remainder is sometimes called an of n. An integer n > 1 whose only proper divisor is 1 is called a
prime number A prime number (or a prime) is a natural number greater than 1 that is not a Product (mathematics), product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime ...
. Equivalently, a prime number is a positive integer that has exactly two positive factors: 1 and itself. Any positive divisor of n is a product of prime divisors of n raised to some power. This is a consequence of the
fundamental theorem of arithmetic In mathematics, the fundamental theorem of arithmetic, also called the unique factorization theorem and prime factorization theorem, states that every integer greater than 1 is prime or can be represented uniquely as a product of prime numbers, ...
. A number n is said to be perfect if it equals the sum of its proper divisors, deficient if the sum of its proper divisors is less than n, and abundant if this sum exceeds n. The total number of positive divisors of n is a
multiplicative function In number theory, a multiplicative function is an arithmetic function f of a positive integer n with the property that f(1)=1 and f(ab) = f(a)f(b) whenever a and b are coprime. An arithmetic function is said to be completely multiplicative (o ...
d(n), meaning that when two numbers m and n are
relatively prime In number theory, two integers and are coprime, relatively prime or mutually prime if the only positive integer that is a divisor of both of them is 1. Consequently, any prime number that divides does not divide , and vice versa. This is equiv ...
, then d(mn)=d(m)\times d(n). For instance, d(42) = 8 = 2 \times 2 \times 2 = d(2) \times d(3) \times d(7); the eight divisors of 42 are 1, 2, 3, 6, 7, 14, 21 and 42. However, the number of positive divisors is not a totally multiplicative function: if the two numbers m and n share a common divisor, then it might not be true that d(mn)=d(m)\times d(n). The sum of the positive divisors of n is another multiplicative function \sigma (n) (for example, \sigma (42) = 96 = 3 \times 4 \times 8 = \sigma (2) \times \sigma (3) \times \sigma (7) = 1+2+3+6+7+14+21+42). Both of these functions are examples of
divisor function In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer. When referred to as ''the'' divisor function, it counts the ''number of divisors of an integer'' (includi ...
s. If the
prime factorization In mathematics, integer factorization is the decomposition of a positive integer into a product of integers. Every positive integer greater than 1 is either the product of two or more integer factors greater than 1, in which case it is a comp ...
of n is given by : n = p_1^ \, p_2^ \cdots p_k^ then the number of positive divisors of n is : d(n) = (\nu_1 + 1) (\nu_2 + 1) \cdots (\nu_k + 1), and each of the divisors has the form : p_1^ \, p_2^ \cdots p_k^ where 0 \le \mu_i \le \nu_i for each 1 \le i \le k. For every natural n, d(n) < 2 \sqrt. Also, : d(1)+d(2)+ \cdots +d(n) = n \ln n + (2 \gamma -1) n + O(\sqrt), where \gamma is
Euler–Mascheroni constant Euler's constant (sometimes called the Euler–Mascheroni constant) is a mathematical constant, usually denoted by the lowercase Greek letter gamma (), defined as the limiting difference between the harmonic series and the natural logarith ...
. One interpretation of this result is that a randomly chosen positive integer ''n'' has an average number of divisors of about \ln n. However, this is a result from the contributions of numbers with "abnormally many" divisors.


In abstract algebra


Ring theory


Division lattice

In definitions that allow the divisor to be 0, the relation of divisibility turns the set \mathbb of
non-negative In mathematics, the sign of a real number is its property of being either positive, negative, or 0. Depending on local conventions, zero may be considered as having its own unique sign, having no sign, or having both positive and negative sign. ...
integers into a
partially ordered set In mathematics, especially order theory, a partial order on a Set (mathematics), set is an arrangement such that, for certain pairs of elements, one precedes the other. The word ''partial'' is used to indicate that not every pair of elements need ...
that is a complete distributive lattice. The largest element of this lattice is 0 and the smallest is 1. The meet operation ∧ is given by the
greatest common divisor In mathematics, the greatest common divisor (GCD), also known as greatest common factor (GCF), of two or more integers, which are not all zero, is the largest positive integer that divides each of the integers. For two integers , , the greatest co ...
and the join operation ∨ by the
least common multiple In arithmetic and number theory, the least common multiple (LCM), lowest common multiple, or smallest common multiple (SCM) of two integers ''a'' and ''b'', usually denoted by , is the smallest positive integer that is divisible by both ''a'' and ...
. This lattice is isomorphic to the dual of the
lattice of subgroups In mathematics, the lattice of subgroups of a group G is the lattice whose elements are the subgroups of G, with the partial ordering being set inclusion. In this lattice, the join of two subgroups is the subgroup generated by their union, ...
of the infinite
cyclic group In abstract algebra, a cyclic group or monogenous group is a Group (mathematics), group, denoted C_n (also frequently \Z_n or Z_n, not to be confused with the commutative ring of P-adic number, -adic numbers), that is Generating set of a group, ge ...
Z.


See also

* Arithmetic functions *
Euclidean algorithm In mathematics, the Euclidean algorithm,Some widely used textbooks, such as I. N. Herstein's ''Topics in Algebra'' and Serge Lang's ''Algebra'', use the term "Euclidean algorithm" to refer to Euclidean division or Euclid's algorithm, is a ...
*
Fraction (mathematics) A fraction (from , "broken") represents a part of a whole or, more generally, any number of equal parts. When spoken in everyday English, a fraction describes how many parts of a certain size there are, for example, one-half, eight-fifths, thre ...
*
Integer factorization In mathematics, integer factorization is the decomposition of a positive integer into a product of integers. Every positive integer greater than 1 is either the product of two or more integer factors greater than 1, in which case it is a comp ...
* Table of divisors – A table of prime and non-prime divisors for 1–1000 *
Table of prime factors The tables contain the prime factorization of the natural numbers from 1 to 1000. When ''n'' is a prime number, the prime factorization is just ''n'' itself, written in bold below. The number 1 is called a unit. It has no prime factors and is ...
– A table of prime factors for 1–1000 *
Unitary divisor In mathematics, a natural number ''a'' is a unitary divisor (or Hall divisor) of a number ''b'' if ''a'' is a divisor of ''b'' and if ''a'' and \frac are coprime, having no common factor other than 1. Equivalently, a divisor ''a'' of ''b'' is a un ...


Notes


Citations


References

* * ; section B * * * * Øystein Ore, Number Theory and its History, McGraw–Hill, NY, 1944 (and Dover reprints). * * {{Fractions and ratios Elementary number theory Division (mathematics)