Discrete Mathematics
   HOME

TheInfoList



OR:

Discrete mathematics is the study of mathematical structures that can be considered "discrete" (in a way analogous to discrete variables, having a
bijection In mathematics, a bijection, also known as a bijective function, one-to-one correspondence, or invertible function, is a function between the elements of two sets, where each element of one set is paired with exactly one element of the other s ...
with the set of
natural numbers In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called ''cardinal n ...
) rather than "continuous" (analogously to
continuous function In mathematics, a continuous function is a function such that a continuous variation (that is a change without jump) of the argument induces a continuous variation of the value of the function. This means that there are no abrupt changes in value ...
s). Objects studied in discrete mathematics include integers, graphs, and statements in logic. By contrast, discrete mathematics excludes topics in "continuous mathematics" such as real numbers, calculus or Euclidean geometry. Discrete objects can often be enumerated by integers; more formally, discrete mathematics has been characterized as the branch of mathematics dealing with
countable set In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers; ...
s (finite sets or sets with the same
cardinality In mathematics, the cardinality of a set is a measure of the number of elements of the set. For example, the set A = \ contains 3 elements, and therefore A has a cardinality of 3. Beginning in the late 19th century, this concept was generalized ...
as the natural numbers). However, there is no exact definition of the term "discrete mathematics". The set of objects studied in discrete mathematics can be finite or infinite. The term finite mathematics is sometimes applied to parts of the field of discrete mathematics that deals with finite sets, particularly those areas relevant to business. Research in discrete mathematics increased in the latter half of the twentieth century partly due to the development of digital computers which operate in "discrete" steps and store data in "discrete" bits. Concepts and notations from discrete mathematics are useful in studying and describing objects and problems in branches of computer science, such as computer algorithms, programming languages, cryptography, automated theorem proving, and
software development Software development is the process of conceiving, specifying, designing, programming, documenting, testing, and bug fixing involved in creating and maintaining applications, frameworks, or other software components. Software development invol ...
. Conversely, computer implementations are significant in applying ideas from discrete mathematics to real-world problems. Although the main objects of study in discrete mathematics are discrete objects, analytic methods from "continuous" mathematics are often employed as well. In university curricula, "Discrete Mathematics" appeared in the 1980s, initially as a computer science support course; its contents were somewhat haphazard at the time. The curriculum has thereafter developed in conjunction with efforts by
ACM ACM or A.C.M. may refer to: Aviation * AGM-129 ACM, 1990–2012 USAF cruise missile * Air chief marshal * Air combat manoeuvring or dogfighting * Air cycle machine * Arica Airport (Colombia) (IATA: ACM), in Arica, Amazonas, Colombia Computing * ...
and MAA into a course that is basically intended to develop
mathematical maturity In mathematics, mathematical maturity is an informal term often used to refer to the quality of having a general understanding and mastery of the way mathematicians operate and communicate. It pertains to a mixture of mathematical experience and i ...
in first-year students; therefore, it is nowadays a prerequisite for mathematics majors in some universities as well. Some high-school-level discrete mathematics textbooks have appeared as well. At this level, discrete mathematics is sometimes seen as a preparatory course, not unlike precalculus in this respect. The Fulkerson Prize is awarded for outstanding papers in discrete mathematics.


Grand challenges, past and present

The history of discrete mathematics has involved a number of challenging problems which have focused attention within areas of the field. In graph theory, much research was motivated by attempts to prove the
four color theorem In mathematics, the four color theorem, or the four color map theorem, states that no more than four colors are required to color the regions of any map so that no two adjacent regions have the same color. ''Adjacent'' means that two regions sh ...
, first stated in 1852, but not proved until 1976 (by Kenneth Appel and Wolfgang Haken, using substantial computer assistance). In logic, the second problem on
David Hilbert David Hilbert (; ; 23 January 1862 – 14 February 1943) was a German mathematician, one of the most influential mathematicians of the 19th and early 20th centuries. Hilbert discovered and developed a broad range of fundamental ideas in many a ...
's list of open problems presented in 1900 was to prove that the axioms of
arithmetic Arithmetic () is an elementary part of mathematics that consists of the study of the properties of the traditional operations on numbers— addition, subtraction, multiplication, division, exponentiation, and extraction of roots. In the 19th ...
are consistent. Gödel's second incompleteness theorem, proved in 1931, showed that this was not possible – at least not within arithmetic itself. Hilbert's tenth problem was to determine whether a given polynomial
Diophantine equation In mathematics, a Diophantine equation is an equation, typically a polynomial equation in two or more unknowns with integer coefficients, such that the only solutions of interest are the integer ones. A linear Diophantine equation equates to a c ...
with integer coefficients has an integer solution. In 1970, Yuri Matiyasevich proved that this could not be done. The need to break German codes in World War II led to advances in cryptography and theoretical computer science, with the first programmable digital electronic computer being developed at England's Bletchley Park with the guidance of Alan Turing and his seminal work, On Computable Numbers. The
Cold War The Cold War is a term commonly used to refer to a period of geopolitical tension between the United States and the Soviet Union and their respective allies, the Western Bloc and the Eastern Bloc. The term '' cold war'' is used because the ...
meant that cryptography remained important, with fundamental advances such as public-key cryptography being developed in the following decades. The telecommunication industry has also motivated advances in discrete mathematics, particularly in graph theory and
information theory Information theory is the scientific study of the quantification (science), quantification, computer data storage, storage, and telecommunication, communication of information. The field was originally established by the works of Harry Nyquist a ...
. Formal verification of statements in logic has been necessary for
software development Software development is the process of conceiving, specifying, designing, programming, documenting, testing, and bug fixing involved in creating and maintaining applications, frameworks, or other software components. Software development invol ...
of safety-critical systems, and advances in automated theorem proving have been driven by this need.
Computational geometry Computational geometry is a branch of computer science devoted to the study of algorithms which can be stated in terms of geometry. Some purely geometrical problems arise out of the study of computational geometric algorithms, and such problems ar ...
has been an important part of the computer graphics incorporated into modern video games and
computer-aided design Computer-aided design (CAD) is the use of computers (or ) to aid in the creation, modification, analysis, or optimization of a design. This software is used to increase the productivity of the designer, improve the quality of design, improve c ...
tools. Several fields of discrete mathematics, particularly theoretical computer science, graph theory, and
combinatorics Combinatorics is an area of mathematics primarily concerned with counting, both as a means and an end in obtaining results, and certain properties of finite structures. It is closely related to many other areas of mathematics and has many appl ...
, are important in addressing the challenging
bioinformatics Bioinformatics () is an interdisciplinary field that develops methods and software tools for understanding biological data, in particular when the data sets are large and complex. As an interdisciplinary field of science, bioinformatics combi ...
problems associated with understanding the tree of life. Currently, one of the most famous open problems in theoretical computer science is the P = NP problem, which involves the relationship between the complexity classes P and NP. The
Clay Mathematics Institute The Clay Mathematics Institute (CMI) is a private, non-profit foundation (nonprofit), foundation dedicated to increasing and disseminating mathematics, mathematical knowledge. Formerly based in Peterborough, New Hampshire, the corporate address i ...
has offered a $1 million USD prize for the first correct proof, along with prizes for six other mathematical problems.


Topics in discrete mathematics


Theoretical computer science

Theoretical computer science includes areas of discrete mathematics relevant to computing. It draws heavily on graph theory and mathematical logic. Included within theoretical computer science is the study of algorithms and data structures. Computability studies what can be computed in principle, and has close ties to logic, while complexity studies the time, space, and other resources taken by computations. Automata theory and formal language theory are closely related to computability. Petri nets and
process algebra In computer science, the process calculi (or process algebras) are a diverse family of related approaches for formally modelling concurrent systems. Process calculi provide a tool for the high-level description of interactions, communications, an ...
s are used to model computer systems, and methods from discrete mathematics are used in analyzing VLSI electronic circuits.
Computational geometry Computational geometry is a branch of computer science devoted to the study of algorithms which can be stated in terms of geometry. Some purely geometrical problems arise out of the study of computational geometric algorithms, and such problems ar ...
applies algorithms to geometrical problems and representations of geometrical objects, while computer image analysis applies them to representations of images. Theoretical computer science also includes the study of various continuous computational topics.


Information theory

Information theory involves the quantification of information. Closely related is coding theory which is used to design efficient and reliable data transmission and storage methods. Information theory also includes continuous topics such as:
analog signal An analog signal or analogue signal (see spelling differences) is any continuous signal representing some other quantity, i.e., ''analogous'' to another quantity. For example, in an analog audio signal, the instantaneous signal voltage varies c ...
s,
analog coding Coding theory is the study of the properties of codes and their respective fitness for specific applications. Codes are used for data compression, cryptography, error detection and correction, data transmission and data storage. Codes are studie ...
,
analog encryption Coding theory is the study of the properties of codes and their respective fitness for specific applications. Codes are used for data compression, cryptography, error detection and correction, data transmission and data storage. Codes are studie ...
.


Logic

Logic is the study of the principles of valid reasoning and
inference Inferences are steps in reasoning, moving from premises to logical consequences; etymologically, the word '' infer'' means to "carry forward". Inference is theoretically traditionally divided into deduction and induction, a distinction that in ...
, as well as of consistency, soundness, and completeness. For example, in most systems of logic (but not in intuitionistic logic)
Peirce's law In logic, Peirce's law is named after the philosopher and logician Charles Sanders Peirce. It was taken as an axiom in his first axiomatisation of propositional logic. It can be thought of as the law of excluded middle written in a form tha ...
(((''P''→''Q'')→''P'')→''P'') is a theorem. For classical logic, it can be easily verified with a truth table. The study of mathematical proof is particularly important in logic, and has accumulated to automated theorem proving and formal verification of software. Logical formulas are discrete structures, as are proofs, which form finite trees or, more generally, directed acyclic graph structures (with each inference step combining one or more premise branches to give a single conclusion). The truth values of logical formulas usually form a finite set, generally restricted to two values: ''true'' and ''false'', but logic can also be continuous-valued, e.g.,
fuzzy logic Fuzzy logic is a form of many-valued logic in which the truth value of variables may be any real number between 0 and 1. It is employed to handle the concept of partial truth, where the truth value may range between completely true and completely ...
. Concepts such as infinite proof trees or infinite derivation trees have also been studied, e.g. infinitary logic.


Set theory

Set theory is the branch of mathematics that studies sets, which are collections of objects, such as or the (infinite) set of all prime numbers. Partially ordered sets and sets with other
relations Relation or relations may refer to: General uses *International relations, the study of interconnection of politics, economics, and law on a global level *Interpersonal relationship, association or acquaintance between two or more people *Public ...
have applications in several areas. In discrete mathematics,
countable set In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers; ...
s (including finite sets) are the main focus. The beginning of set theory as a branch of mathematics is usually marked by Georg Cantor's work distinguishing between different kinds of infinite set, motivated by the study of trigonometric series, and further development of the theory of infinite sets is outside the scope of discrete mathematics. Indeed, contemporary work in
descriptive set theory In mathematical logic, descriptive set theory (DST) is the study of certain classes of "well-behaved" subsets of the real line and other Polish spaces. As well as being one of the primary areas of research in set theory, it has applications to ot ...
makes extensive use of traditional continuous mathematics.


Combinatorics

Combinatorics studies the way in which discrete structures can be combined or arranged. Enumerative combinatorics concentrates on counting the number of certain combinatorial objects - e.g. the twelvefold way provides a unified framework for counting permutations, combinations and partitions. Analytic combinatorics concerns the enumeration (i.e., determining the number) of combinatorial structures using tools from
complex analysis Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates Function (mathematics), functions of complex numbers. It is helpful in many branches of mathemati ...
and probability theory. In contrast with enumerative combinatorics which uses explicit combinatorial formulae and generating functions to describe the results, analytic combinatorics aims at obtaining asymptotic formulae. Topological combinatorics concerns the use of techniques from topology and algebraic topology/ combinatorial topology in
combinatorics Combinatorics is an area of mathematics primarily concerned with counting, both as a means and an end in obtaining results, and certain properties of finite structures. It is closely related to many other areas of mathematics and has many appl ...
. Design theory is a study of combinatorial designs, which are collections of subsets with certain
intersection In mathematics, the intersection of two or more objects is another object consisting of everything that is contained in all of the objects simultaneously. For example, in Euclidean geometry, when two lines in a plane are not parallel, their i ...
properties.
Partition theory In number theory and combinatorics, a partition of a positive integer , also called an integer partition, is a way of writing as a sum of positive integers. Two sums that differ only in the order of their summands are considered the same part ...
studies various enumeration and asymptotic problems related to integer partitions, and is closely related to q-series, special functions and orthogonal polynomials. Originally a part of number theory and analysis, partition theory is now considered a part of combinatorics or an independent field. Order theory is the study of partially ordered sets, both finite and infinite.


Graph theory

Graph theory, the study of graphs and networks, is often considered part of combinatorics, but has grown large enough and distinct enough, with its own kind of problems, to be regarded as a subject in its own right.Graphs on Surfaces
Bojan Mohar and Carsten Thomassen, Johns Hopkins University press, 2001
Graphs are one of the prime objects of study in discrete mathematics. They are among the most ubiquitous models of both natural and human-made structures. They can model many types of relations and process dynamics in physical, biological and social systems. In computer science, they can represent networks of communication, data organization, computational devices, the flow of computation, etc. In mathematics, they are useful in geometry and certain parts of topology, e.g.
knot theory In the mathematical field of topology, knot theory is the study of knot (mathematics), mathematical knots. While inspired by knots which appear in daily life, such as those in shoelaces and rope, a mathematical knot differs in that the ends are ...
. Algebraic graph theory has close links with group theory and topological graph theory has close links to topology. There are also continuous graphs; however, for the most part, research in graph theory falls within the domain of discrete mathematics.


Number theory

Number theory is concerned with the properties of numbers in general, particularly integers. It has applications to cryptography and
cryptanalysis Cryptanalysis (from the Greek ''kryptós'', "hidden", and ''analýein'', "to analyze") refers to the process of analyzing information systems in order to understand hidden aspects of the systems. Cryptanalysis is used to breach cryptographic sec ...
, particularly with regard to modular arithmetic, diophantine equations, linear and quadratic congruences, prime numbers and
primality test A primality test is an algorithm for determining whether an input number is prime. Among other fields of mathematics, it is used for cryptography. Unlike integer factorization, primality tests do not generally give prime factors, only stating whet ...
ing. Other discrete aspects of number theory include geometry of numbers. In
analytic number theory In mathematics, analytic number theory is a branch of number theory that uses methods from mathematical analysis to solve problems about the integers. It is often said to have begun with Peter Gustav Lejeune Dirichlet's 1837 introduction of Diric ...
, techniques from continuous mathematics are also used. Topics that go beyond discrete objects include transcendental numbers, diophantine approximation,
p-adic analysis In mathematics, ''p''-adic analysis is a branch of number theory that deals with the mathematical analysis of functions of ''p''-adic numbers. The theory of complex-valued numerical functions on the ''p''-adic numbers is part of the theory of lo ...
and function fields.


Algebraic structures

Algebraic structure In mathematics, an algebraic structure consists of a nonempty set ''A'' (called the underlying set, carrier set or domain), a collection of operations on ''A'' (typically binary operations such as addition and multiplication), and a finite set of ...
s occur as both discrete examples and continuous examples. Discrete algebras include: boolean algebra used in
logic gate A logic gate is an idealized or physical device implementing a Boolean function, a logical operation performed on one or more binary inputs that produces a single binary output. Depending on the context, the term may refer to an ideal logic gate, ...
s and programming; relational algebra used in databases; discrete and finite versions of groups, rings and fields are important in algebraic coding theory; discrete semigroups and monoids appear in the theory of formal languages.


Discrete analogues of continuous mathematics

There are many concepts and theories in continuous mathematics which have discrete versions, such as discrete calculus, discrete Fourier transforms, discrete geometry,
discrete logarithm In mathematics, for given real numbers ''a'' and ''b'', the logarithm log''b'' ''a'' is a number ''x'' such that . Analogously, in any group ''G'', powers ''b'k'' can be defined for all integers ''k'', and the discrete logarithm log''b' ...
s, discrete differential geometry, discrete exterior calculus, discrete Morse theory, discrete optimization, discrete probability theory, discrete probability distribution,
difference equation In mathematics, a recurrence relation is an equation according to which the nth term of a sequence of numbers is equal to some combination of the previous terms. Often, only k previous terms of the sequence appear in the equation, for a parameter ...
s, discrete dynamical systems, and discrete vector measures.


Calculus of finite differences, discrete analysis, and discrete calculus

In discrete calculus and the calculus of finite differences, a function defined on an interval of the integers is usually called a sequence. A sequence could be a finite sequence from a data source or an infinite sequence from a discrete dynamical system. Such a discrete function could be defined explicitly by a list (if its domain is finite), or by a formula for its general term, or it could be given implicitly by a recurrence relation or
difference equation In mathematics, a recurrence relation is an equation according to which the nth term of a sequence of numbers is equal to some combination of the previous terms. Often, only k previous terms of the sequence appear in the equation, for a parameter ...
. Difference equations are similar to differential equations, but replace differentiation by taking the difference between adjacent terms; they can be used to approximate differential equations or (more often) studied in their own right. Many questions and methods concerning differential equations have counterparts for difference equations. For instance, where there are integral transforms in
harmonic analysis Harmonic analysis is a branch of mathematics concerned with the representation of Function (mathematics), functions or signals as the Superposition principle, superposition of basic waves, and the study of and generalization of the notions of Fo ...
for studying continuous functions or analogue signals, there are discrete transforms for discrete functions or digital signals. As well as
discrete metric space In mathematics, a metric space is a set together with a notion of ''distance'' between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general settin ...
s, there are more general
discrete topological space In topology, a discrete space is a particularly simple example of a topological space or similar structure, one in which the points form a , meaning they are ''isolated'' from each other in a certain sense. The discrete topology is the finest t ...
s, finite metric spaces,
finite topological space In mathematics, a finite topological space is a topological space for which the underlying set (mathematics), point set is finite set, finite. That is, it is a topological space which has only finitely many elements. Finite topological spaces are ...
s. The time scale calculus is a unification of the theory of difference equations with that of
differential equations In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, an ...
, which has applications to fields requiring simultaneous modelling of discrete and continuous data. Another way of modeling such a situation is the notion of
hybrid dynamical system A hybrid system is a dynamical system that exhibits both continuous and discrete dynamic behavior – a system that can both ''flow'' (described by a differential equation) and ''jump'' (described by a state machine or automaton). Often, the ...
s.


Discrete geometry

Discrete geometry and combinatorial geometry are about combinatorial properties of ''discrete collections'' of geometrical objects. A long-standing topic in discrete geometry is
tiling of the plane A tessellation or tiling is the covering of a surface, often a plane, using one or more geometric shapes, called ''tiles'', with no overlaps and no gaps. In mathematics, tessellation can be generalized to higher dimensions and a variety of g ...
. In
algebraic geometry Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical ...
, the concept of a curve can be extended to discrete geometries by taking the spectra of polynomial rings over finite fields to be models of the affine spaces over that field, and letting
subvarieties Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. Mo ...
or spectra of other rings provide the curves that lie in that space. Although the space in which the curves appear has a finite number of points, the curves are not so much sets of points as analogues of curves in continuous settings. For example, every point of the form V(x-c) \subset \operatorname K = \mathbb^1 for K a field can be studied either as \operatorname K (x-c) \cong \operatorname K, a point, or as the spectrum \operatorname K of the local ring at (x-c), a point together with a neighborhood around it. Algebraic varieties also have a well-defined notion of tangent space called the Zariski tangent space, making many features of calculus applicable even in finite settings.


Discrete modelling

In applied mathematics, discrete modelling is the discrete analogue of
continuous modelling Continuous modelling is the mathematical practice of applying a model to continuous data (data which has a potentially infinite number, and divisibility, of attributes). They often use differential equations and are converse to discrete modelling D ...
. In discrete modelling, discrete formulae are fit to data. A common method in this form of modelling is to use recurrence relation.
Discretization In applied mathematics, discretization is the process of transferring continuous functions, models, variables, and equations into discrete counterparts. This process is usually carried out as a first step toward making them suitable for numerical ...
concerns the process of transferring continuous models and equations into discrete counterparts, often for the purposes of making calculations easier by using approximations. Numerical analysis provides an important example.


See also

*
Outline of discrete mathematics Discrete mathematics is the study of mathematical structures that are fundamentally discrete rather than continuous. In contrast to real numbers that have the property of varying "smoothly", the objects studied in discrete mathematics – such a ...
* Cyberchase, a show that teaches Discrete Mathematics to children


References


Further reading

* * * * * * * * * * *


External links


Discrete mathematics
at the utk.edu Mathematics Archives, providing links to syllabi, tutorials, programs, etc.
Iowa Central: Electrical Technologies Program
Discrete mathematics for
Electrical engineering Electrical engineering is an engineering discipline concerned with the study, design, and application of equipment, devices, and systems which use electricity, electronics, and electromagnetism. It emerged as an identifiable occupation in the l ...
. {{DEFAULTSORT:Discrete Mathematics