HOME



picture info

P (complexity)
In computational complexity theory, P, also known as PTIME or DTIME(''n''O(1)), is a fundamental complexity class. It contains all decision problems that can be solved by a deterministic Turing machine using a polynomial amount of computation time, or polynomial time. Cobham's thesis holds that P is the class of computational problems that are "efficiently solvable" or " tractable". This is inexact: in practice, some problems not known to be in P have practical solutions, and some that are in P do not, but this is a useful rule of thumb. Definition A language ''L'' is in P if and only if there exists a deterministic Turing machine ''M'', such that * ''M'' runs for polynomial time on all inputs * For all ''x'' in ''L'', ''M'' outputs 1 * For all ''x'' not in ''L'', ''M'' outputs 0 P can also be viewed as a uniform family of Boolean circuits. A language ''L'' is in P if and only if there exists a polynomial-time uniform family of Boolean circuits \, such that * For all n \in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computational Complexity Theory
In theoretical computer science and mathematics, computational complexity theory focuses on classifying computational problems according to their resource usage, and explores the relationships between these classifications. A computational problem is a task solved by a computer. A computation problem is solvable by mechanical application of mathematical steps, such as an algorithm. A problem is regarded as inherently difficult if its solution requires significant resources, whatever the algorithm used. The theory formalizes this intuition, by introducing mathematical models of computation to study these problems and quantifying their computational complexity, i.e., the amount of resources needed to solve them, such as time and storage. Other measures of complexity are also used, such as the amount of communication (used in communication complexity), the number of logic gate, gates in a circuit (used in circuit complexity) and the number of processors (used in parallel computing). O ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Function Problem
In computational complexity theory, a function problem is a computational problem where a single output (of a total function) is expected for every input, but the output is more complex than that of a decision problem. For function problems, the output is not simply 'yes' or 'no'. Definition A functional problem P is defined by a relation R over strings of an arbitrary alphabet \Sigma: : R \subseteq \Sigma^* \times \Sigma^*. An algorithm solves P if for every input x such that there exists a y satisfying (x, y) \in R, the algorithm produces one such y, and if there are no such y, it rejects. A promise function problem is allowed to do anything (thus may not terminate) if no such y exists. Examples A well-known function problem is given by the Functional Boolean Satisfiability Problem, FSAT for short. The problem, which is closely related to the SAT decision problem, can be formulated as follows: :Given a boolean formula \varphi with variables x_1, \ldots, x_n, find an as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Memory Space (computational Resource)
In computational complexity theory, a computational resource is a resource used by some computational models in the solution of computational problems. The simplest computational resources are computation time, the number of steps necessary to solve a problem, and memory space, the amount of storage needed while solving the problem, but many more complicated resources have been defined. A computational problem is generally defined in terms of its action on any valid input. Examples of problems might be "given an integer ''n'', determine whether ''n'' is prime", or "given two numbers ''x'' and ''y'', calculate the product ''x''*''y''". As the inputs get bigger, the amount of computational resources needed to solve a problem will increase. Thus, the resources needed to solve a problem are described in terms of asymptotic analysis, by identifying the resources as a function of the length or size of the input. Resource usage is often partially quantified using Big ''O'' notation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Logarithm
In mathematics, the logarithm of a number is the exponent by which another fixed value, the base, must be raised to produce that number. For example, the logarithm of to base is , because is to the rd power: . More generally, if , then is the logarithm of to base , written , so . As a single-variable function, the logarithm to base is the inverse of exponentiation with base . The logarithm base is called the ''decimal'' or ''common'' logarithm and is commonly used in science and engineering. The ''natural'' logarithm has the number  as its base; its use is widespread in mathematics and physics because of its very simple derivative. The ''binary'' logarithm uses base and is widely used in computer science, information theory, music theory, and photography. When the base is unambiguous from the context or irrelevant it is often omitted, and the logarithm is written . Logarithms were introduced by John Napier in 1614 as a means of simplifying calculation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

L (complexity)
In computational complexity theory, L (also known as LSPACE, LOGSPACE or DLOGSPACE) is the complexity class containing decision problems that can be solved by a deterministic Turing machine using a logarithmic amount of writable memory space. Formally, the Turing machine has two tapes, one of which encodes the input and can only be read, whereas the other tape has logarithmic size but can be written as well as read. Logarithmic space is sufficient to hold a constant number of pointers into the input and a logarithmic number of Boolean flags, and many basic logspace algorithms use the memory in this way. Complete problems and logical characterization Every non-trivial problem in L is complete under log-space reductions, so weaker reductions are required to identify meaningful notions of L-completeness, the most common being first-order reductions. A 2004 result by Omer Reingold shows that USTCON, the problem of whether there exists a path between two vertices in a given u ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

P Versus NP Problem
The P versus NP problem is a major unsolved problem in theoretical computer science. Informally, it asks whether every problem whose solution can be quickly verified can also be quickly solved. Here, "quickly" means an algorithm exists that solves the task and runs in polynomial time (as opposed to, say, exponential time), meaning the task completion time is bounded above by a polynomial function on the size of the input to the algorithm. The general class of questions that some algorithm can answer in polynomial time is " P" or "class P". For some questions, there is no known way to find an answer quickly, but if provided with an answer, it can be verified quickly. The class of questions where an answer can be ''verified'' in polynomial time is "NP", standing for "nondeterministic polynomial time".A nondeterministic Turing machine can move to a state that is not determined by the previous state. Such a machine could solve an NP problem in polynomial time by falling into t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Co-NP
In computational complexity theory, co-NP is a complexity class. A decision problem X is a member of co-NP if and only if its complement is in the complexity class NP. The class can be defined as follows: a decision problem is in co-NP if and only if for every ''no''-instance we have a polynomial-length " certificate" and there is a polynomial-time algorithm that can be used to verify any purported certificate. That is, co-NP is the set of decision problems where there exists a polynomial and a polynomial-time bounded Turing machine ''M'' such that for every instance ''x'', ''x'' is a ''no''-instance if and only if: for some possible certificate ''c'' of length bounded by , the Turing machine ''M'' accepts the pair . Complementary problems While an NP problem asks whether a given instance is a ''yes''-instance, its ''complement'' asks whether an instance is a ''no''-instance, which means the complement is in co-NP. Any ''yes''-instance for the original NP problem becomes a '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Non-deterministic Turing Machine
In theoretical computer science, a nondeterministic Turing machine (NTM) is a theoretical model of computation whose governing rules specify more than one possible action when in some given situations. That is, an NTM's next state is ''not'' completely determined by its action and the current symbol it sees, unlike a deterministic Turing machine. NTMs are sometimes used in thought experiments to examine the abilities and limits of computers. One of the most important open problems in theoretical computer science is the P versus NP problem, which (among other equivalent formulations) concerns the question of how difficult it is to simulate nondeterministic computation with a deterministic computer. Background In essence, a Turing machine is imagined to be a simple computer that reads and writes symbols one at a time on an endless tape by strictly following a set of rules. It determines what action it should perform next according to its internal ''state'' and ''what symbol it cu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


NP (complexity)
In computational complexity theory, NP (nondeterministic polynomial time) is a complexity class used to classify decision problems. NP is the Set (mathematics), set of decision problems for which the Computational complexity theory#Problem instances, problem instances, where the answer is "yes", have mathematical proof, proofs verifiable in polynomial time by a deterministic Turing machine, or alternatively the set of problems that can be solved in polynomial time by a nondeterministic Turing machine.''Polynomial time'' refers to how quickly the number of operations needed by an algorithm, relative to the size of the problem, grows. It is therefore a measure of efficiency of an algorithm. * NP is the set of decision problems ''solvable'' in polynomial time by a nondeterministic Turing machine. * NP is the set of decision problems ''verifiable'' in polynomial time by a deterministic Turing machine. The first definition is the basis for the abbreviation NP; "Nondeterministic alg ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Complexity Subsets Pspace
Complexity characterizes the behavior of a system or model whose components interact in multiple ways and follow local rules, leading to Nonlinear system, non-linearity, randomness, Dynamical system, collective dynamics, hierarchy, and emergence. The term is generally used to characterize something with many parts where those parts interact with each other in multiple ways, culminating in a higher order of emergence greater than the sum of its parts. The study of these complex linkages at various scales is the main goal of complex systems theory. The intuitive criterion of complexity can be formulated as follows: a system would be more complex if more parts could be distinguished, and if more connections between them existed. , a number of approaches to characterizing complexity have been used in science; Zayed ''et al.'' reflect many of these. Neil F. Johnson, Neil Johnson states that "even among scientists, there is no unique definition of complexity – and the scientific no ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


P-complete
In computational complexity theory, a decision problem is P-complete ( complete for the complexity class P) if it is in P and every problem in P can be reduced to it by an appropriate reduction. The notion of P-complete decision problems is useful in the analysis of: * which problems are difficult to parallelize effectively, * which problems are difficult to solve in limited space. specifically when stronger notions of reducibility than polytime-reducibility are considered. The specific type of reduction used varies and may affect the exact set of problems. Generically, reductions stronger than polynomial-time reductions are used, since all languages in P (except the empty language and the language of all strings) are P-complete under polynomial-time reductions. If we use NC reductions, that is, reductions which can operate in polylogarithmic time on a parallel computer with a polynomial number of processors, then all P-complete problems lie outside NC and so cannot be effec ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]