
DNA origami is the nanoscale folding of
DNA
Deoxyribonucleic acid (; DNA) is a polymer composed of two polynucleotide chains that coil around each other to form a double helix. The polymer carries genetic instructions for the development, functioning, growth and reproduction of al ...
to create arbitrary two- and three-dimensional shapes at the
nanoscale
Nanotechnology is the manipulation of matter with at least one dimension sized from 1 to 100 nanometers (nm). At this scale, commonly known as the nanoscale, surface area and quantum mechanical effects become important in describing propertie ...
. The specificity of the interactions between
complementary base pairs make DNA a useful construction material, through design of its base sequences.
DNA is a well-understood material that is suitable for creating scaffolds that hold other molecules in place or to create structures all on its own.
DNA origami was the cover story of ''
Nature
Nature is an inherent character or constitution, particularly of the Ecosphere (planetary), ecosphere or the universe as a whole. In this general sense nature refers to the Scientific law, laws, elements and phenomenon, phenomena of the physic ...
'' on March 16, 2006.
Since then, DNA origami has progressed past an art form and has found a number of applications from drug delivery systems to uses as circuitry in plasmonic devices; however, most commercial applications remain in a concept or testing phase.
Overview
The idea of using DNA as a construction material was first introduced in the early 1980s by
Nadrian Seeman.
The method of DNA origami was developed by
Paul Rothemund at the
California Institute of Technology
The California Institute of Technology (branded as Caltech) is a private research university in Pasadena, California, United States. The university is responsible for many modern scientific advancements and is among a small group of institutes ...
.
In contrast to common top-down fabrication methods such as 3D printing or lithography which involve depositing or removing material through a tool, DNA Nanotechnology, as well as DNA Origami as a subset, is a bottom-up fabrication method. By rationally designing the constituent subunits of the DNA polymer, DNA can self-assemble into a variety of shapes. The process of constructing DNA Origami involves the folding of a long single strand of
viral DNA
Deoxyribonucleic acid (; DNA) is a polymer composed of two polynucleotide chains that coil around each other to form a double helix. The polymer carries genetic instructions for the development, functioning, growth and reproduction of al ...
(typically the 7,249 bp genomic DNA of
M13 bacteriophage) aided by multiple smaller "staple" strands. These shorter strands bind the longer in various places, resulting in the formation of a pre-defined two- or three-dimensional shape. Examples include a
smiley face and a coarse map of China and the Americas, along with many three-dimensional structures such as cubes.
There are several DNA properties that make the molecule an ideal building material for DNA origami. DNA strands have a natural tendency to bind to their complementary sequences through
Watson–Crick base pairing. This allows staple strands to locate the position on the scaffold strand without any external manipulation, leading to self-assembly of the desired structure.
The specific sequence of bases in DNA gives the material an element of programmability by determining its binding behavior. Carefully designing the sequences of the staple strands enables scientists to precisely direct the scaffold strand's folding into a predetermined shape with high precision.
On a chemical level, the hydrogen bonds that exist between the complementary base pairs provide strength and stability to the folded DNA origami structures. Additionally, DNA is a relatively stable molecule, offering resilience in physiological conditions.
One of the advantages of using a DNA Origami nanostructure over an otherwise classified DNA nanostructure is the ease of defining finite structures.
In the design of some other DNA nanostructures, it can be impractical to design the extremely large number of individualized strands if the entire structure is composed of smaller strands. One method of bypassing the need for a huge number of different strands is to use repeating units, which comes with the disadvantage of a distribution of sizes and sometimes shapes. DNA Origami, however, forms discrete structures.
Applications for DNA Origami are primarily focused around the ability to exert fine control on systems, especially by constraining positions of molecules, typically by attachment to the DNA Origami nanostructures. Current applications are primarily focused around sensing and drug delivery, but many additional applications have been investigated.
Fabrication
Fabrication of DNA origami objects requires a preliminary intuition of 3-dimensional DNA structural design. This can be difficult to grasp due to the complexity of exclusively using
adenine
Adenine (, ) (nucleoside#List of nucleosides and corresponding nucleobases, symbol A or Ade) is a purine nucleotide base that is found in DNA, RNA, and Adenosine triphosphate, ATP. Usually a white crystalline subtance. The shape of adenine is ...
-
thymine
Thymine () (symbol T or Thy) is one of the four nucleotide bases in the nucleic acid of DNA that are represented by the letters G–C–A–T. The others are adenine, guanine, and cytosine. Thymine is also known as 5-methyluracil, a pyrimidine ...
pairings and
guanine
Guanine () (symbol G or Gua) is one of the four main nucleotide bases found in the nucleic acids DNA and RNA, the others being adenine, cytosine, and thymine ( uracil in RNA). In DNA, guanine is paired with cytosine. The guanine nucleoside ...
-
cytosine
Cytosine () (symbol C or Cyt) is one of the four nucleotide bases found in DNA and RNA, along with adenine, guanine, and thymine ( uracil in RNA). It is a pyrimidine derivative, with a heterocyclic aromatic ring and two substituents attac ...
pairings to both fold and unravel double helical DNA molecules such that the output strands produce uniquely desired shapes.
The design software and the choice of base-pair sequences become crucial for creating intricate 2D or even 3D shapes as the key to DNA origami lies in the precise
base-pairing
A base pair (bp) is a fundamental unit of double-stranded nucleic acids consisting of two nucleobases bound to each other by hydrogen bonds. They form the building blocks of the DNA double helix and contribute to the folded structure of both DNA ...
between the technique's two building blocks: staple strands and the scaffold. This ensures specific binding and accurate folding. A scaffold strand is a long, single-stranded DNA molecule, often sourced from a virus. Staple strands are shorter DNA strands designed to bind to specific sequences on the scaffold strand, dictating its folding.
To produce a desired shape, images are drawn with a
raster fill of a single long DNA
molecule
A molecule is a group of two or more atoms that are held together by Force, attractive forces known as chemical bonds; depending on context, the term may or may not include ions that satisfy this criterion. In quantum physics, organic chemi ...
. This design is then fed into a computer program that calculates the placement of individual staple strands. Each staple binds to a specific region of the DNA template, and thus due to
Watson–Crick base pairing, the necessary sequences of all staple strands are known and displayed. The DNA is mixed, then heated and cooled. As the DNA cools, the various staples pull the long strand into the desired shape. Designs are directly observable via several methods, including
electron microscopy
An electron microscope is a microscope that uses a beam of electrons as a source of illumination. It uses electron optics that are analogous to the glass lenses of an optical light microscope to control the electron beam, for instance focusing i ...
,
atomic force microscopy
Atomic force microscopy (AFM) or scanning force microscopy (SFM) is a very-high-resolution type of scanning probe microscopy (SPM), with demonstrated resolution on the order of fractions of a nanometer, more than 1000 times better than the opti ...
, or
fluorescence microscopy
A fluorescence microscope is an optical microscope that uses fluorescence instead of, or in addition to, scattering, reflection, and attenuation or absorption, to study the properties of organic or inorganic substances. A fluorescence micro ...
when DNA is coupled to fluorescent materials.

Bottom-up
self-assembly
Self-assembly is a process in which a disordered system of pre-existing components forms an organized structure or pattern as a consequence of specific, local interactions among the components themselves, without external direction. When the ...
methods are considered promising alternatives that offer cheap, parallel synthesis of nanostructures under relatively mild conditions.
Since the creation of this method, software was developed to assist the process using
CAD software. This allows researchers to use a computer to determine the way to create the correct staples needed to form a certain shape. One such software called caDNAno is an open source software for creating such structures from DNA. The use of software has not only increased the ease of the process but has also drastically reduced the errors made by manual calculations.
After meticulously planning the sequence of the staple strands with software to ensure they bind the scaffold strand at the intended points, the designed staple strand sequences are synthesized in a lab using techniques like automated DNA synthesis. Finally, the scaffold strand and staple strands are mixed in a buffer solution and subjected to a specific temperature cycle. This cycle allows the staple strands to find their complementary sequences on the scaffold strand and bind through
hydrogen bonding
In chemistry, a hydrogen bond (H-bond) is a specific type of molecular interaction that exhibits partial covalent character and cannot be described as a purely electrostatic force. It occurs when a hydrogen (H) atom, Covalent bond, covalently b ...
, causing the scaffold to fold into the desired shape.
Dynamic Structures and Modifications
As in the broader field of DNA nanotechnology, DNA Origami may be made dynamic in nature through the use of a variety of methods. The three primary methods of creating a dynamic DNA Origami machine are toehold mediated strand displacement, enzymatic reactions, and base stacking. While these methods are most commonly used, additional methods for creating dynamic DNA Origami machines exist, such as designing a directional component and using brownian motion to drive rotational movement of structures or leveraging less commonly used DNA self-assembly phenomena like G-quadruplexes or i-motifs which can be pH sensitive.

Modifications can be otherwise used to affect structural properties, to impart unique chemistry to the nanostructures, or to add stimuli responses to the nanostructures. Modifications to structures can be made through conjugation of molecules such as proteins, or through chemical modification of the DNA bases themselves. pH dependent responses, light dependent responses, and more have been shown through modified systems.
One example application of creating dynamic structures is the ability to have a stimuli response resulting in drug release, which is presented by several groups. Other, less common applications comes in sensing moving mechanisms in vivo such as the unwinding of helicase.
Biomedical Applications
DNA Origami, being made of a natural biological polymer, is well suited to the biological environment when salt concentrations allow,
and offers fine control over the positioning of molecules and structures in the system. This allows DNA Origami to be applicable to a number of scenarios in biomedical engineering. Current biomedical applications include drug release with 0 order mechanisms,
vaccines,
cell signaling,
and sensing applications.
DNA is folded into an
octahedron
In geometry, an octahedron (: octahedra or octahedrons) is any polyhedron with eight faces. One special case is the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at each vertex. Many types of i ...
and coated with a single bilayer of
phospholipid
Phospholipids are a class of lipids whose molecule has a hydrophilic "head" containing a phosphate group and two hydrophobic "tails" derived from fatty acids, joined by an alcohol residue (usually a glycerol molecule). Marine phospholipids typ ...
, mimicking the envelope of a
virus
A virus is a submicroscopic infectious agent that replicates only inside the living Cell (biology), cells of an organism. Viruses infect all life forms, from animals and plants to microorganisms, including bacteria and archaea. Viruses are ...
particle. The DNA nanoparticles, each at about the size of a virion, are able to remain in circulation for hours after injected into mice. It also elicits much lower immune response than the uncoated particles. It presents a potential use in drug delivery, reported by researchers in Wyss Institute at Harvard University.
Researchers at the
Harvard University
Harvard University is a Private university, private Ivy League research university in Cambridge, Massachusetts, United States. Founded in 1636 and named for its first benefactor, the History of the Puritans in North America, Puritan clergyma ...
Wyss Institute reported the self-assembling and self-destructing drug delivery vessels using the DNA origami in the lab tests. The DNA nanorobot they created is an open DNA tube with a hinge on one side which can be clasped shut. The drug filled DNA tube is held shut by a DNA
aptamer
Aptamers are oligomers of artificial ssDNA, RNA, Xeno nucleic acid, XNA, or peptide that ligand, bind a specific target molecule, or family of target molecules. They exhibit a range of affinities (Dissociation constant, KD in the pM to μM rang ...
, configured to identify and seek certain diseased related protein. Once the origami nanobots get to the infected cells, the aptamers break apart and release the drug. The first disease model the researchers used was
leukemia
Leukemia ( also spelled leukaemia; pronounced ) is a group of blood cancers that usually begin in the bone marrow and produce high numbers of abnormal blood cells. These blood cells are not fully developed and are called ''blasts'' or '' ...
and
lymphoma
Lymphoma is a group of blood and lymph tumors that develop from lymphocytes (a type of white blood cell). The name typically refers to just the cancerous versions rather than all such tumours. Signs and symptoms may include enlarged lymph node ...
.
Researchers in the
National Center for Nanoscience and Technology in
Beijing
Beijing, Chinese postal romanization, previously romanized as Peking, is the capital city of China. With more than 22 million residents, it is the world's List of national capitals by population, most populous national capital city as well as ...
and
Arizona State University
Arizona State University (Arizona State or ASU) is a public university, public research university in Tempe, Arizona, United States. Founded in 1885 as Territorial Normal School by the 13th Arizona Territorial Legislature, the university is o ...
reported a DNA origami delivery vehicle for
Doxorubicin
Doxorubicin, sold under the brand name Adriamycin among others, is a chemotherapy medication used to treat cancer. This includes breast cancer, bladder cancer, Kaposi's sarcoma, lymphoma, and acute lymphocytic leukemia. It is often used toge ...
, a well-known anti-cancer drug. The drug was non-covalently attached to DNA origami nanostructures through intercalation and a high drug load was achieved. The DNA-Doxorubicin complex was taken up by human breast adenocarcinoma cancer cells (
MCF-7
MCF-7 is a breast cancer cell line isolated in 1970 from a 69-year-old woman. MCF-7 is the acronym of Michigan Cancer Foundation-7, referring to the institute in Detroit where the cell line was established in 1973 by Herbert Soule and co-workers ...
) via cellular internalization with much higher efficiency than doxorubicin in free form. The enhancement of cell killing activity was observed not only in regular
MCF-7
MCF-7 is a breast cancer cell line isolated in 1970 from a 69-year-old woman. MCF-7 is the acronym of Michigan Cancer Foundation-7, referring to the institute in Detroit where the cell line was established in 1973 by Herbert Soule and co-workers ...
, more importantly, also in doxorubicin-resistant cells. The scientists theorized that the doxorubicin-loaded DNA origami inhibits
lysosomal acidification, resulting in cellular redistribution of the drug to action sites, thus increasing the
cytotoxicity
Cytotoxicity is the quality of being toxic to cells. Examples of toxic agents are toxic metals, toxic chemicals, microbe neurotoxins, radiation particles and even specific neurotransmitters when the system is out of balance. Also some types of d ...
against the tumor cells. Further testing on in vivo on mice suggests that over a 12 day period, Doxorubicin was more effective at reducing tumor sizes in mice when it was contained in DNA Origami Nanostructures or DONs.
Researchers from the
Massachusetts Institute of Technology
The Massachusetts Institute of Technology (MIT) is a Private university, private research university in Cambridge, Massachusetts, United States. Established in 1861, MIT has played a significant role in the development of many areas of moder ...
are developing a method to attach various viral antigens to Virus-shaped DNA particles to mimic the virus to be used to develop new vaccines. This was started in 2016 when Bathe's lab created an algorithm known as DAEDALUS (DNA Origami Sequence Design Algorithm for User-defined Structures) to generate precision-controlled three-dimensional shapes of DNA. Using the tool they designed virus-shaped scaffolding that can modularly attach different antigens to the surface of the DNA scaffold. Currently, MIT is working to develop optimal geometries for B cells to recognize HIV antigens. Further research has attempted to replace HIV antigens with SARS-CoV-2 and are testing whether vaccines show proper immune response from isolated
B cells
B cells, also known as B lymphocytes, are a type of the lymphocyte subtype. They function in the humoral immunity component of the adaptive immune system. B cells produce antibody molecules which may be either secreted or inserted into the plasm ...
and in mice.

Similarly, researchers from the
Technical University of Munich
The Technical University of Munich (TUM or TU Munich; ) is a public research university in Munich, Bavaria, Germany. It specializes in engineering, technology, medicine, and applied and natural sciences.
Established in 1868 by King Ludwig II ...
have developed a method to have
T-cells
T cells (also known as T lymphocytes) are an important part of the immune system and play a central role in the adaptive immune response. T cells can be distinguished from other lymphocytes by the presence of a T-cell receptor (TCR) on their cell ...
target tumor cells by using antigen coated DNA origami. The researchers developed a method to create chassis known as programmable T-cell Engagers or (PTEs) which are DNA Origami structures that can be configured to bind to user-defined target cells and T-cells based on which antigens are coated on the surfaces of the nanostructure. The in vitro results show that after 24 hours of exposure 90% of the tumor cells were destroyed. Meanwhile in vivo testing showed that their PTEs were capable of binding to the target proteins for several hours which validates the mechanism they designed.
Nanotechnology Applications
Many potential applications have been suggested in literature, including enzyme immobilization, drug delivery systems, and nanotechnological self-assembly of materials. Though DNA is not the natural choice for building active structures for nanorobotic applications, due to its lack of structural and catalytic versatility, several papers have examined the possibility of molecular walkers on origami and switches for algorithmic computing.
The following paragraphs list some of the reported applications conducted in the laboratories with clinical potential.
In a study conducted by a group of scientists from
iNANO center and
CDNA Center at
Aarhus university
Aarhus University (, abbreviated AU) is a public research university. Its main campus is located in Aarhus, Denmark. It is the second largest and second oldest university in Denmark. The university is part of the Coimbra Group, the Guild, and Ut ...
, researchers were able to construct a small multi-switchable 3D DNA Box Origami. The proposed nanoparticle was characterized by
AFM,
TEM and
FRET
A fret is any of the thin strips of material, usually metal wire, inserted laterally at specific positions along the neck or fretboard of a stringed instrument. Frets usually extend across the full width of the neck. On some historical inst ...
. The constructed box was shown to have a unique reclosing mechanism, which enabled it to repeatedly open and close in response to a unique set of DNA or RNA keys. The authors proposed that this "DNA device can potentially be used for a broad range of applications such as controlling the function of single molecules, controlled drug delivery, and molecular computing."

Nanorobots made of DNA origami demonstrated computing capacities and completed pre-programmed task inside the living organism was reported by a team of bioengineers at Wyss Institute at Harvard University and Institute of Nanotechnology and Advanced Materials at
Bar-Ilan University
Bar-Ilan University (BIU, , ''Universitat Bar-Ilan'') is a public research university in the Tel Aviv District city of Ramat Gan, Israel. Established in 1955, Bar Ilan is Israel's second-largest academic university institution. It has 20,000 ...
. As a proof of concept, the team injected various kinds of nanobots (the curled DNA encasing molecules with
fluorescent
Fluorescence is one of two kinds of photoluminescence, the emission of light by a substance that has absorbed light or other electromagnetic radiation. When exposed to ultraviolet radiation, many substances will glow (fluoresce) with color ...
markers) into live cockroaches. By tracking the markers inside the cockroaches, the team found the accuracy of delivery of the molecules (released by the uncurled DNA) in target cells, the interactions among the nanobots and the control are equivalent to a computer system. The complexity of the logic operations, the decisions and actions, increases with the increased number of nanobots. The team estimated that the computing power in the cockroach can be scaled up to that of an 8-bit computer.
A research group at the
Indian Institute of Science
The Indian Institute of Science (IISc) is a Public university, public, Deemed university, deemed, research university for higher education and research in science, engineering, design, and management. It is located in Bengaluru, Karnataka. The ...
used nanostructures to develop a platform to elucidate the coaxial stacking between DNA bases. This approach utilized
DNA-PAINT based super-resolution microscopy for visualizing these DNA nanostructures and performed DNA binding kinetics analysis to elucidate the fundamental force of base-stacking that helps stabilize the DNA double helical structure. They went on to assemble multimeric DNA origami nanostructures termed as a 'three-point star' into a
tetrahedral
In geometry, a tetrahedron (: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular Face (geometry), faces, six straight Edge (geometry), edges, and four vertex (geometry), vertices. The tet ...
3D origami structure. The assembly relied chiefly on base-stacking interactions between each subunit. The group further showed that the knowledge of such interactions can be used to predict and thus tune the relative stabilities of these multimeric DNA nanostructures.
Similar approaches
The idea of using
protein design to accomplish the same goals as DNA origami has surfaced as well. Researchers at the National Institute of Chemistry in Slovenia are working on using
rational design
In chemical biology and biomolecular engineering, rational design (RD) is an umbrella term which invites the strategy of creating new molecules with a certain functionality, based upon the ability to predict how the molecule's structure (specific ...
of
protein folding
Protein folding is the physical process by which a protein, after Protein biosynthesis, synthesis by a ribosome as a linear chain of Amino acid, amino acids, changes from an unstable random coil into a more ordered protein tertiary structure, t ...
to create structures much like those seen with DNA origami. The main focus of current research in protein folding design is in the drug delivery field, using antibodies attached to proteins as a way to create a targeted vehicle.
See also
*
RNA origami
*
DNA nanotechnology
*
Molecular self-assembly
In chemistry and materials science, molecular self-assembly is the process by which molecules adopt a defined arrangement without guidance or management from an outside source. There are two types of self-assembly: intermolecular and intramolec ...
*
Folding@home
Folding@home (FAH or F@h) is a distributed computing project aimed to help scientists develop new therapeutics for a variety of diseases by the means of simulating protein dynamics. This includes the process of protein folding and the movements ...
*
Origami
) is the Japanese art of paper folding. In modern usage, the word "origami" is often used as an inclusive term for all folding practices, regardless of their culture of origin. The goal is to transform a flat square sheet of paper into a ...
References
Further reading
*
{{Authority control
DNA nanotechnology
Genetics techniques