A composite material (also called a composition material or shortened to composite, which is the common name) is a
material
Material is a substance or mixture of substances that constitutes an object. Materials can be pure or impure, living or non-living matter. Materials can be classified on the basis of their physical and chemical properties, or on their geolo ...
which is produced from two or more constituent materials. These constituent materials have notably dissimilar chemical or physical properties and are merged to create a material with properties unlike the individual elements. Within the finished structure, the individual elements remain separate and distinct, distinguishing composites from mixtures and solid solutions.
Typical
engineered
Engineering is the use of scientific principles to design and build machines, structures, and other items, including bridges, tunnels, roads, vehicles, and buildings. The discipline of engineering encompasses a broad range of more specializ ...
fiberglass
Fiberglass (American English) or fibreglass (Commonwealth English) is a common type of fiber-reinforced plastic using glass fiber. The fibers may be randomly arranged, flattened into a sheet called a chopped strand mat, or woven into glass cl ...
*
Ceramic matrix composites
In materials science, ceramic matrix composites (CMCs) are a subgroup of composite materials and a subgroup of ceramics. They consist of ceramic fibers embedded in a ceramic matrix. The fibers and the matrix both can consist of any ceramic m ...
advanced composite materials
''Advanced Composite Materials'' is a bimonthly peer-review scientific journal
In academic publishing, a scientific journal is a periodical publication intended to further the progress of science, usually by reporting new research.
Content
...
There are various reasons where new material can be favoured. Typical examples include materials which are less expensive, lighter, stronger or more durable when compared with common materials, as well as composite materials inspired from animals and natural sources with low carbon footprint.
More recently researchers have also begun to actively include sensing, actuation, computation and communication into composites, which are known as robotic materials.
Composite materials are generally used for
building
A building, or edifice, is an enclosed structure with a roof and walls standing more or less permanently in one place, such as a house or factory (although there's also portable buildings). Buildings come in a variety of sizes, shapes, and funct ...
s,
bridge
A bridge is a structure built to span a physical obstacle (such as a body of water, valley, road, or rail) without blocking the way underneath. It is constructed for the purpose of providing passage over the obstacle, which is usually somethi ...
shower
A shower is a place in which a person bathes under a spray of typically warm or hot water. Indoors, there is a drain in the floor. Most showers have temperature, spray pressure and adjustable showerhead nozzle. The simplest showers have a ...
imitation
Imitation (from Latin ''imitatio'', "a copying, imitation") is a behavior whereby an individual observes and replicates another's behavior. Imitation is also a form of that leads to the "development of traditions, and ultimately our culture. ...
granite
Granite () is a coarse-grained ( phaneritic) intrusive igneous rock composed mostly of quartz, alkali feldspar, and plagioclase. It forms from magma with a high content of silica and alkali metal oxides that slowly cools and solidifies und ...
and cultured marblesinks and countertops. They are also being increasingly used in general automotive applications.
The most advanced examples perform routinely on
spacecraft
A spacecraft is a vehicle or machine designed to spaceflight, fly in outer space. A type of artificial satellite, spacecraft are used for a variety of purposes, including Telecommunications, communications, Earth observation satellite, Earth ...
and
aircraft
An aircraft is a vehicle that is able to fly by gaining support from the air. It counters the force of gravity by using either static lift or by using the dynamic lift of an airfoil, or in a few cases the downward thrust from jet engines. ...
in demanding environments.
History
The earliest composite materials were made from straw and mud combined to form bricks for
building
A building, or edifice, is an enclosed structure with a roof and walls standing more or less permanently in one place, such as a house or factory (although there's also portable buildings). Buildings come in a variety of sizes, shapes, and funct ...
construction
Construction is a general term meaning the art and science to form objects, systems, or organizations,"Construction" def. 1.a. 1.b. and 1.c. ''Oxford English Dictionary'' Second Edition on CD-ROM (v. 4.0) Oxford University Press 2009 and ...
. Ancient brick-making was documented by Egyptian tomb paintings.
Wattle and daub is one of the oldest composite materials, at over 6000 years old. Concrete is also a composite material, and is used more than any other synthetic material in the world. , about 7.5 billion cubic metres of concrete are made each year
* Woody
plant
Plants are predominantly Photosynthesis, photosynthetic eukaryotes of the Kingdom (biology), kingdom Plantae. Historically, the plant kingdom encompassed all living things that were not animals, and included algae and fungi; however, all curr ...
s, both true
wood
Wood is a porous and fibrous structural tissue found in the stems and roots of trees and other woody plants. It is an organic materiala natural composite of cellulose fibers that are strong in tension and embedded in a matrix of ligni ...
bamboo
Bamboos are a diverse group of evergreen perennial flowering plants making up the subfamily Bambusoideae of the grass family Poaceae. Giant bamboos are the largest members of the grass family. The origin of the word "bamboo" is uncertain, ...
, yield natural composites that were used prehistorically by mankind and are still used widely in construction and scaffolding.
* Plywood, 3400 BC, by the Ancient Mesopotamians; gluing wood at different angles gives better properties than natural wood.
* Cartonnage, layers of linen or papyrus soaked in plaster dates to the First Intermediate Period of Egypt c. 2181–2055 BC and was used for death masks.
* Cob mud bricks, or mud walls, (using mud (clay) with straw or gravel as a binder) have been used for thousands of years.
*
Concrete
Concrete is a composite material composed of fine and coarse aggregate bonded together with a fluid cement (cement paste) that hardens (cures) over time. Concrete is the second-most-used substance in the world after water, and is the most ...
was described by
Vitruvius
Vitruvius (; c. 80–70 BC – after c. 15 BC) was a Roman architect and engineer during the 1st century BC, known for his multi-volume work entitled '' De architectura''. He originated the idea that all buildings should have three attribut ...
, writing around 25 BC in his ''Ten Books on Architecture'', distinguished types of aggregate appropriate for the preparation of lime mortars. For ''structural mortars'', he recommended '' pozzolana'', which were volcanic sands from the sandlike beds of Pozzuoli brownish-yellow-gray in colour near
Naples
Naples (; it, Napoli ; nap, Napule ), from grc, Νεάπολις, Neápolis, lit=new city. is the regional capital of Campania and the third-largest city of Italy, after Rome and Milan, with a population of 909,048 within the city's adminis ...
and reddish-brown at
Rome
, established_title = Founded
, established_date = 753 BC
, founder = King Romulus ( legendary)
, image_map = Map of comune of Rome (metropolitan city of Capital Rome, region Lazio, Italy).svg
, map_caption ...
. Vitruvius specifies a ratio of 1 part lime to 3 parts pozzolana for cements used in buildings and a 1:2 ratio of lime to pulvis Puteolanus for underwater work, essentially the same ratio mixed today for concrete used at sea. Natural cement-stones, after burning, produced cements used in concretes from post-Roman times into the 20th century, with some properties superior to manufactured Portland cement.
*
Papier-mâché
upright=1.3, Mardi Gras papier-mâché masks, Haiti
upright=1.3, Papier-mâché Catrinas, traditional figures for day of the dead celebrations in Mexico
Papier-mâché (, ; , literally "chewed paper") is a composite material consisting of p ...
, a composite of paper and glue, has been used for hundreds of years.
* The first artificial fibre reinforced plastic was a combination of fiber glass and bakelite, performed in 1935 by Al Simison and Arthur D Little in Owens Corning Company
* One of the most common and familiar composite is fibreglass, in which small glass fibre are embedded within a polymeric material (normally an epoxy or polyester). The glass fibre is relatively strong and stiff (but also brittle), whereas the polymer is ductile (but also weak and flexible). Thus the resulting fibreglass is relatively stiff, strong, flexible, and ductile.
Examples
Composite materials
Concrete
Concrete is a composite material composed of fine and coarse aggregate bonded together with a fluid cement (cement paste) that hardens (cures) over time. Concrete is the second-most-used substance in the world after water, and is the most ...
is the most common artificial composite material of all and typically consists of loose stones (aggregate) held with a matrix of
cement
A cement is a binder, a chemical substance used for construction that sets, hardens, and adheres to other materials to bind them together. Cement is seldom used on its own, but rather to bind sand and gravel (aggregate) together. Cement m ...
. Concrete is an inexpensive material, and will not compress or shatter even under quite a large compressive force. However, concrete cannot survive tensile loading (i.e., if stretched it will quickly break apart). Therefore, to give concrete the ability to resist being stretched, steel bars, which can resist high stretching (tensile) forces, are often added to concrete to form reinforced concrete.
Fibre-reinforced polymers include carbon fiber reinforced polymer and glass-reinforced plastic. If classified by matrix then there are
thermoplastic composites
A thermoplastic, or thermosoft plastic, is any plastic polymer material that becomes pliable or moldable at a certain elevated temperature and solidifies upon cooling.
Most thermoplastics have a high molecular weight. The polymer chains associate ...
carbon fibre
Carbon fiber-reinforced polymers (American English), carbon-fibre-reinforced polymers (Commonwealth English
The use of the English language in current and former member countries of the Commonwealth of Nations was largely inherited fro ...
in an epoxy resin matrix.
Shape memory polymer composites are high-performance composites, formulated using fibre or fabric reinforcements and shape memory polymer resin as the matrix. Since a shape memory polymer resin is used as the matrix, these composites have the ability to be easily manipulated into various configurations when they are heated above their activation temperatures and will exhibit high strength and stiffness at lower temperatures. They can also be reheated and reshaped repeatedly without losing their material properties. These composites are ideal for applications such as lightweight, rigid, deployable structures; rapid manufacturing; and dynamic reinforcement.
High strain composites are another type of high-performance composites that are designed to perform in a high deformation setting and are often used in deployable systems where structural flexing is advantageous. Although high strain composites exhibit many similarities to shape memory polymers, their performance is generally dependent on the fibre layout as opposed to the resin content of the matrix.
Composites can also use metal fibres reinforcing other metals, as in metal matrix composites (MMC) or
ceramic matrix composites
In materials science, ceramic matrix composites (CMCs) are a subgroup of composite materials and a subgroup of ceramics. They consist of ceramic fibers embedded in a ceramic matrix. The fibers and the matrix both can consist of any ceramic m ...
(CMC), which includes
bone
A bone is a rigid organ that constitutes part of the skeleton in most vertebrate animals. Bones protect the various other organs of the body, produce red and white blood cells, store minerals, provide structure and support for the body, an ...
(
hydroxyapatite
Hydroxyapatite, also called hydroxylapatite (HA), is a naturally occurring mineral form of calcium apatite with the formula Ca5(PO4)3(OH), but it is usually written Ca10(PO4)6(OH)2 to denote that the crystal unit cell comprises two entities ...
reinforced with collagen fibres), cermet (ceramic and metal) and
concrete
Concrete is a composite material composed of fine and coarse aggregate bonded together with a fluid cement (cement paste) that hardens (cures) over time. Concrete is the second-most-used substance in the world after water, and is the most ...
. Ceramic matrix composites are built primarily for
fracture toughness
In materials science, fracture toughness is the critical stress intensity factor of a sharp crack where propagation of the crack suddenly becomes rapid and unlimited. A component's thickness affects the constraint conditions at the tip of a ...
, not for strength. Another class of composite materials involve woven fabric composite consisting of longitudinal and transverse laced yarns. Woven fabric composites are flexible as they are in form of fabric.
Organic matrix/ceramic aggregate composites include
asphalt concrete
Asphalt concrete (commonly called asphalt, blacktop, or pavement in North America, and tarmac, bitumen macadam, or rolled asphalt in the United Kingdom and the Republic of Ireland) is a composite material commonly used to surface roads, parkin ...
,
polymer concrete
Polymer concrete, also known as Epoxy Granite, is a type of concrete that uses a polymer to replace lime-type cements as a binder. In some cases the polymer is used in addition to Portland cement to form Polymer Cement Concrete (PCC) or Polymer M ...
,
mastic asphalt
Asphalt concrete (commonly called asphalt, blacktop, or pavement in North America, and tarmac, bitumen macadam, or rolled asphalt in the United Kingdom and the Republic of Ireland) is a composite material commonly used to surface roads, parki ...
, mastic roller hybrid, dental composite, syntactic foam and mother of pearl. Chobham armour is a special type of composite armour used in military applications.
Additionally, thermoplastic composite materials can be formulated with specific metal powders resulting in materials with a density range from 2 g/cm3 to 11 g/cm3 (same density as lead). The most common name for this type of material is "high gravity compound" (HGC), although "lead replacement" is also used. These materials can be used in place of traditional materials such as aluminium, stainless steel, brass, bronze, copper, lead, and even tungsten in weighting, balancing (for example, modifying the centre of gravity of a tennis racquet), vibration damping, and radiation shielding applications. High density composites are an economically viable option when certain materials are deemed hazardous and are banned (such as lead) or when secondary operations costs (such as machining, finishing, or coating) are a factor.
There have been several studies indicating that interleaving stiff and brittle epoxy based carbon fiber reinforced polymer laminates with flexible thermoplastic laminates can help to make highly toughened composites that show improved impact resistance. Another interesting aspect of such interleaved composites is that they are able to have shape memory behaviour without needing any shape memory polymers or
shape memory alloys
In metallurgy, a shape-memory alloy (SMA) is an alloy that can be deformed when cold but returns to its pre-deformed ("remembered") shape when heated. It may also be called memory metal, memory alloy, smart metal, smart alloy, or muscle wire.
P ...
e.g. balsa plies interleaved with hot glue, aluminium plies interleaved with acrylic polymers or PVC and carbon fiber reinforced polymer laminates interleaved with polystyrene.
A sandwich-structured composite is a special class of composite material that is fabricated by attaching two thin but stiff skins to a lightweight but thick core. The core material is normally low strength material, but its higher thickness provides the sandwich composite with high bendingstiffness with overall low
density
Density (volumetric mass density or specific mass) is the substance's mass per unit of volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' can also be used. Mathematicall ...
.
Wood is a naturally occurring composite comprising cellulose fibres in a
lignin
Lignin is a class of complex organic polymers that form key structural materials in the support tissues of most plants. Lignins are particularly important in the formation of cell walls, especially in wood and bark, because they lend rigidity ...
oriented strand board
Oriented strand board (OSB) is a type of engineered wood similar to particle board, formed by adding adhesives and then compressing layers of wood
Wood is a porous and fibrous structural tissue found in the stems and roots of trees a ...
alloy
An alloy is a mixture of chemical elements of which at least one is a metal. Unlike chemical compounds with metallic bases, an alloy will retain all the properties of a metal in the resulting material, such as electrical conductivity, ductilit ...
or GRP. These generate low-weight, high rigidity materials.
Particulate composites have particle as filler material dispersed in matrix, which may be nonmetal, such as glass, epoxy. Automobile tire is an example of particulate composite.
Advanced diamond-like carbon (DLC) coated polymer composites have been reported where the coating increases the surface hydrophobicity, hardness and wear resistance.
Ferromagnetic composites, including those with a polymer matrix consisting, for example, of nanocrystalline filler of Fe-based powders and polymers matrix. Amorphous and nanocrystalline powders obtained, for example, from metallic glasses can be used. Their use makes it possible to obtain ferromagnetic nanocomposites with controlled magnetic properties.
Products
Fibre-reinforced composite materials have gained popularity (despite their generally high cost) in high-performance products that need to be lightweight, yet strong enough to take harsh loading conditions such as
aerospace
Aerospace is a term used to collectively refer to the atmosphere and outer space. Aerospace activity is very diverse, with a multitude of commercial, industrial and military applications. Aerospace engineering consists of aeronautics and astrona ...
orthopedic surgery
Orthopedic surgery or orthopedics ( alternatively spelt orthopaedics), is the branch of surgery concerned with conditions involving the musculoskeletal system. Orthopedic surgeons use both surgical and nonsurgical means to treat musculoskeletal ...
, and it is the most common hockey stick material.
Carbon composite is a key material in today's launch vehicles and heat shields for the re-entry phase of
spacecraft
A spacecraft is a vehicle or machine designed to spaceflight, fly in outer space. A type of artificial satellite, spacecraft are used for a variety of purposes, including Telecommunications, communications, Earth observation satellite, Earth ...
. It is widely used in solar panel substrates, antenna reflectors and yokes of spacecraft. It is also used in payload adapters, inter-stage structures and heat shields of launch vehicles. Furthermore, disk brake systems of
airplane
An airplane or aeroplane (informally plane) is a fixed-wing aircraft that is propelled forward by thrust from a jet engine, propeller, or rocket engine. Airplanes come in a variety of sizes, shapes, and wing configurations. The broad spe ...
s and racing cars are using carbon/carbon material, and the
composite material
A composite material (also called a composition material or shortened to composite, which is the common name) is a material which is produced from two or more constituent materials. These constituent materials have notably dissimilar chemical or ...
with
carbon fibre
Carbon fiber-reinforced polymers (American English), carbon-fibre-reinforced polymers (Commonwealth English
The use of the English language in current and former member countries of the Commonwealth of Nations was largely inherited fro ...
s and
silicon carbide
Silicon carbide (SiC), also known as carborundum (), is a hard chemical compound containing silicon and carbon. A semiconductor, it occurs in nature as the extremely rare mineral moissanite, but has been mass-produced as a powder and crystal ...
sports car
A sports car is a car designed with an emphasis on dynamic performance, such as handling, acceleration, top speed, the thrill of driving and racing capability. Sports cars originated in Europe in the early 1900s and are currently produced by ...
s.
In 2006, a fibre-reinforced composite pool panel was introduced for in-ground swimming pools, residential as well as commercial, as a non-corrosive alternative to galvanized steel.
In 2007, an all-composite military Humvee was introduced by TPI Composites Inc and Armor Holdings Inc, the first all-composite military vehicle. By using composites the vehicle is lighter, allowing higher payloads. In 2008, carbon fibre and DuPont Kevlar (five times stronger than steel) were combined with enhanced thermoset resins to make military transit cases by ECS Composites creating 30-percent lighter cases with high strength.
Pipes and fittings for various purpose like transportation of potable water, fire-fighting, irrigation, seawater, desalinated water, chemical and industrial waste, and sewage are now manufactured in glass reinforced plastics.
Composite materials used in tensile structures for facade application provides the advantage of being translucent. The woven base cloth combined with the appropriate coating allows better light transmission. This provides a very comfortable level of illumination compared to the full brightness of outside.
The wings of wind turbines, in growing sizes in the order of 50 m length are fabricated in composites since several years.
Two-lower-leg-amputees run on carbon-composite spring-like artificial feet as quick as non-amputee athletes.
High pressure gas cylinders typically about 7–9 litre volume x 300 bar pressure for firemen are nowadays constructed from carbon composite. Type-4-cylinders include metal only as boss that carries the thread to screw in the valve.
On 5 September 2019, HMD Global unveiled the Nokia 6.2 and
Nokia 7.2
The Nokia 7.2 is a Nokia branded Android smartphone announced September 6th, 2019 at IFA. At launch, prices started at $349 (£249) for the cheapest model.
Notable changes from the Nokia 7.1
The Nokia 7.2 has three rear cameras, including ...
which are claimed to be using polymer composite for the frames.
Overview
Composite materials are created from individual materials. These individual materials are known as constituent materials, and there are two main categories of it. One is the
matrix
Matrix most commonly refers to:
* ''The Matrix'' (franchise), an American media franchise
** '' The Matrix'', a 1999 science-fiction action film
** "The Matrix", a fictional setting, a virtual reality environment, within ''The Matrix'' (franchi ...
( binder) and the other reinforcement. A portion of each kind is needed at least. The reinforcement receives support from the matrix as the matrix surrounds the reinforcement and maintains its relative positions. The properties of the matrix are improved as the reinforcements impart their exceptional physical and mechanical properties. The mechanical properties become unavailable from the individual constituent materials by synergism. At the same time, the designer of the product or structure receives options to choose an optimum combination from the variety of matrix and strengthening materials.
To shape the engineered composites, it must be formed. The reinforcement is placed onto the mould surface or into the
mould
A mold () or mould () is one of the structures certain fungi can form. The dust-like, colored appearance of molds is due to the formation of spores containing fungal secondary metabolites. The spores are the dispersal units of the fungi. No ...
cavity. Before or after this, the matrix can be introduced to the reinforcement. The matrix undergoes a melding event which sets the part shape necessarily. This melding event can happen in several ways, depending upon the matrix nature, such as solidification from the melted state for a thermoplastic polymer matrix composite or chemical polymerization for a thermoset polymer matrix.
According to the requirements of end-item design, various methods of moulding can be used. The natures of the chosen matrix and reinforcement are the key factors influencing the methodology. The gross quantity of material to be made is another main factor. To support high capital investments for rapid and automated manufacturing technology, vast quantities can be used. Cheaper capital investments but higher labour and tooling expenses at a correspondingly slower rate assists the small production quantities.
Many commercially produced composites use a
polymer
A polymer (; Greek ''poly-'', "many" + '' -mer'', "part")
is a substance or material consisting of very large molecules called macromolecules, composed of many repeating subunits. Due to their broad spectrum of properties, both synthetic and ...
matrix material often called a resin solution. There are many different polymers available depending upon the starting raw ingredients. There are several broad categories, each with numerous variations. The most common are known as polyester, vinyl ester, epoxy, phenolic, polyimide, polyamide, polypropylene, PEEK, and others. The reinforcement materials are often fibres but also commonly ground minerals. The various methods described below have been developed to reduce the resin content of the final product, or the fibre content is increased. As a rule of thumb, lay up results in a product containing 60% resin and 40% fibre, whereas vacuum infusion gives a final product with 40% resin and 60% fibre content. The strength of the product is greatly dependent on this ratio.
Martin Hubbe and Lucian A Lucia consider
wood
Wood is a porous and fibrous structural tissue found in the stems and roots of trees and other woody plants. It is an organic materiala natural composite of cellulose fibers that are strong in tension and embedded in a matrix of ligni ...
matrix
Matrix most commonly refers to:
* ''The Matrix'' (franchise), an American media franchise
** '' The Matrix'', a 1999 science-fiction action film
** "The Matrix", a fictional setting, a virtual reality environment, within ''The Matrix'' (franchi ...
of
lignin
Lignin is a class of complex organic polymers that form key structural materials in the support tissues of most plants. Lignins are particularly important in the formation of cell walls, especially in wood and bark, because they lend rigidity ...
.
Cores in composites
Several layup designs of composite also involve a co-curing or post-curing of the prepreg with many other media, such as foam or honeycomb. Generally, this is known as a sandwich structure. This is a more general layup for the production of cowlings, doors, radomes or non-structural parts.
Open- and closed-cell-structured foams like polyvinylchloride,
polyurethane
Polyurethane (; often abbreviated PUR and PU) refers to a class of polymers composed of organic chemistry, organic units joined by carbamate (urethane) links. In contrast to other common polymers such as polyethylene and polystyrene, polyurethan ...
,
polyethylene
Polyethylene or polythene (abbreviated PE; IUPAC name polyethene or poly(methylene)) is the most commonly produced plastic. It is a polymer, primarily used for packaging (plastic bags, plastic films, geomembranes and containers including ...
honeycombs
A honeycomb is a mass of hexagonal prismatic wax cells built by honey bees in their nests to contain their larvae and stores of honey and pollen.
Beekeepers may remove the entire honeycomb to harvest honey. Honey bees consume about of hone ...
are generally utilized core materials. Open- and closed-cell metal foam can also be utilized as core materials. Recently, 3D graphene structures ( also called graphene foam) have also been employed as core structures. A recent review by Khurram and Xu et al., have provided the summary of the state-of-the-art techniques for fabrication of the 3D structure of graphene, and the examples of the use of these foam like structures as a core for their respective polymer composites.
Semi-Crystalline Polymers
Although the two phases are chemically equivalent, semi-crystalline polymers can be described both quantitatively and qualitatively as composite materials. The crystalline portion has a higher elastic modulus and provides reinforcement for the less stiff, amorphous phase. Polymeric materials can range from 0% to 100% crystallinity aka volume fraction depending on molecular structure and thermal history. Different processing techniques can be employed to vary the percent crystallinity in these materials and thus the mechanical properties of these materials as described in the physical properties section. This effect is seen in a variety of places from industrial plastics like polyethylene shopping bags to spiders which can produce silks with different mechanical properties. In many cases these materials act like particle composites with randomly dispersed crystals known as spherulites. However they can also be engineered to be anisotropic and act more like fiber reinforced composites. In the case of spider silk, the properties of the material can even be dependent on the size of the crystals, independent of the volume fraction. Ironically, single component polymeric materials are some of the most easily tunable composite materials known.
Methods of fabrication
Normally, the fabrication of composite includes wetting, mixing or saturating the reinforcement with the matrix. The matrix is then induced to bind together (with heat or a chemical reaction) into a rigid structure. Usually, the operation is done in an open or closed forming mould. However, the order and ways of introducing the constituents alters considerably. Composites fabrication is achieved by a wide variety of methods, including advanced fibre placement (Automated fibre placement), fibreglass spray lay-up process, filament winding,
lanxide process
The Lanxide process, also known as pressureless metal infiltration, is a way of producing metal-matrix composite materials by a process of partial reaction; the process involves a careful choice of initial alloy (usually aluminium with about 3% ma ...
z-pinning
Z-pinning is a technique to insert reinforcing fibres (also called Z-pins or Z-fibres) along the Z-direction of continuous fibre-reinforced plastics. Z-pins can be made of metal or precured unidirectional composite fibres. It is designed for use ...
.
Overview of mould
The reinforcing and matrix materials are merged, compacted, and cured (processed) within a mould to undergo a melding event. The part shape is fundamentally set after the melding event. However, under particular process conditions, it can deform. The melding event For a thermoset polymer matrix material is a curing reaction that is caused by the possibility of extra heat or chemical reactivity such as an organic peroxide. The melding event for a thermoplastic polymeric matrix material is a solidification from the melted state. The melding event for a metal matrix material such as titanium foil is a fusing at high pressure and a temperature near the melting point.
It is suitable for many moulding methods to refer to one mould piece as a "lower" mould and another mould piece as an "upper" mould. Lower and upper does not refer to the mould's configuration in space, but the different faces of the moulded panel. There is always a lower mould, and sometimes an upper mould in this convention. Part construction commences by applying materials to the lower mould. Lower mould and upper mould are more generalized descriptors than more common and specific terms such as male side, female side, a-side, b-side, tool side, bowl, hat, mandrel, etc. Continuous manufacturing utilizes a different nomenclature.
Usually, the moulded product is referred to as a panel. It can be referred to as casting for certain geometries and material combinations. It can be referred to as a profile for certain continuous processes. Some of the processes are
autoclave moulding Autoclave moulding is an advanced composite manufacturing process.
Procedure
It is a process that uses a two-sided mould set that forms both surfaces of the panel. On the upper side is a flexible membrane made from silicone or an extruded polymer ...
light resin transfer moulding Light resin transfer moulding (Light RTM) is a process by which products of Composite materials are manufactured using a closed mold system.
Procedure
Similar to the methods performed in resin transfer molding, Light RTM involves a closed mold pr ...
transfer moulding
Transfer molding (BrE: transfer moulding) is a manufacturing process in which casting material is forced into a mold. Transfer molding is different from compression molding in that the mold is enclosed rather than open to the fill plunger resul ...
slip forming
Slip forming, continuous poured, continuously formed, or slipform construction is a construction method in which concrete is poured into a continuously moving form.Nawy, ''Concrete Construction Engineering Handbook,'' 2008, p. 10—33. Slip formi ...
. There are also forming capabilities including CNC filament winding, vacuum infusion, wet lay-up, compression moulding, and
thermoplastic
A thermoplastic, or thermosoft plastic, is any plastic polymer material that becomes pliable or moldable at a certain elevated temperature and solidifies upon cooling.
Most thermoplastics have a high molecular weight. The polymer chains associat ...
moulding, to name a few. The practice of curing ovens and paint booths is also required for some projects.
Finishing methods
The composite parts finishing is also crucial in the final design. Many of these finishes will involve rain-erosion coatings or polyurethane coatings.
Tooling
The mould and mould inserts are referred to as "tooling." The mould/tooling can be built from different materials. Tooling materials include
aluminium
Aluminium (aluminum in AmE, American and CanE, Canadian English) is a chemical element with the Symbol (chemistry), symbol Al and atomic number 13. Aluminium has a density lower than those of other common metals, at approximately o ...
,
carbon fibre
Carbon fiber-reinforced polymers (American English), carbon-fibre-reinforced polymers (Commonwealth English
The use of the English language in current and former member countries of the Commonwealth of Nations was largely inherited fro ...
, invar, nickel, reinforced silicone rubber and steel. The tooling material selection is normally based on, but not limited to, the coefficient of thermal expansion, expected number of cycles, end item tolerance, desired or expected surface condition, cure method, glass transition temperature of the material being moulded, moulding method, matrix, cost and other various considerations.
Physical properties
Usually, the composite's physical properties are not isotropic (independent of the direction of applied force) in nature. But they are typically anisotropic (different depending on the direction of the applied force or load). For instance, the composite panel's stiffness will usually depend upon the orientation of the applied forces and/or moments. The composite's strength is bounded by two loading conditions, as shown in the plot to the right.
Isostrain rule of mixtures
If both the fibres and matrix are aligned parallel to the loading direction, the deformation of both phases will be the same (assuming there is no delamination at the fibre-matrix interface). This isostrain condition provides the upper bound for composite strength, and is determined by the rule of mixtures:
where ''EC'' is the effective composite
Young's modulus
Young's modulus E, the Young modulus, or the modulus of elasticity in tension or compression (i.e., negative tension), is a mechanical property that measures the tensile or compressive stiffness of a solid material when the force is applied ...
, and ''Vi'' and ''Ei'' are the volume fraction and Young's moduli, respectively, of the composite phases.
For example, a composite material made up of α and β phases as shown in the figure to the right under isostrain, the Young's modulus would be as follows:where Vα and Vβ are the respective volume fractions of each phase.
This can be derived by considering that in the isostrain case, Assuming that the composite has a uniform cross section, the stress on the composite is a weighted average between the two phases, The stresses in the individual phases are given by Hooke's Law, Combining these equations gives that the overall stress in the composite is Then it can be shown that
Isostress rule of mixtures
The lower bound is dictated by the isostress condition, in which the fibres and matrix are oriented perpendicularly to the loading direction:and now the strains become a weighted averageRewriting Hooke's Law for the individual phases This leads toFrom the definition of Hooke's Lawand in general
Following the example above, if one had a composite material made up of α and β phases under isostress conditions as shown in the figure to the right, the composition Young's modulus would be: The isostrain condition implies that under an applied load, both phases experience the same strain but will feel different stress. Comparatively, under isostress conditions both phases will feel the same stress but the strains will differ between each phase. A generalized equation for any loading condition between isostrain and isostress can be written as:
where X is a material property such as modulus or stress, c, m, and r stand for the properties of the composite, matrix, and reinforcement materials respectively, and n is a value between 1 and −1.
The above equation can be further generalized beyond a two phase composite to an m-component system:
Though composite stiffness is maximized when fibres are aligned with the loading direction, so is the possibility of fibre tensile fracture, assuming the tensile strength exceeds that of the matrix. When a fibre has some angle of misorientation θ, several fracture modes are possible. For small values of θ the stress required to initiate fracture is increased by a factor of (cos θ)−2 due to the increased cross-sectional area (''A'' cos θ) of the fibre and reduced force (''F/''cos θ) experienced by the fibre, leading to a composite tensile strength of ''σparallel /''cos2 θ where ''σparallel '' is the tensile strength of the composite with fibres aligned parallel with the applied force.
Intermediate angles of misorientation θ lead to matrix shear failure. Again the cross sectional area is modified but since shear stress is now the driving force for failure the area of the matrix parallel to the fibres is of interest, increasing by a factor of 1/sin θ. Similarly, the force parallel to this area again decreases (''F/''cos θ) leading to a total tensile strength of ''τmy /''sin θ cos θ where ''τmy'' is the matrix shear strength.
Finally, for large values of θ (near π/2) transverse matrix failure is the most likely to occur, since the fibres no longer carry the majority of the load. Still, the tensile strength will be greater than for the purely perpendicular orientation, since the force perpendicular to the fibres will decrease by a factor of 1/sin θ and the area decreases by a factor of 1/sin θ producing a composite tensile strength of ''σperp /''sin2θ where ''σperp '' is the tensile strength of the composite with fibres align perpendicular to the applied force.
The majority of commercial composites are formed with random dispersion and orientation of the strengthening fibres, in which case the composite Young's modulus will fall between the isostrain and isostress bounds. However, in applications where the strength-to-weight ratio is engineered to be as high as possible (such as in the aerospace industry), fibre alignment may be tightly controlled.
Panel stiffness is also dependent on the design of the panel. For instance, the fibre reinforcement and matrix used, the method of panel build, thermoset versus thermoplastic, and type of weave.
In contrast to composites, isotropic materials (for example, aluminium or steel), in standard wrought forms, possess the same stiffness typically despite the directional orientation of the applied forces and/or moments. The relationship between forces/moments and strains/curvatures for an isotropic material can be described with the following material properties: Young's Modulus, the Shear Modulus and the Poisson's ratio, in relatively simple mathematical relationships. For the anisotropic material, it needs the mathematics of a second-order tensor and up to 21 material property constants. For the special case of orthogonal isotropy, there are three distinct material property constants for each of Young's Modulus, Shear Modulus and Poisson's ratio—a total of 9 constants to express the relationship between forces/moments and strains/curvatures.
Techniques that take benefit of the materials' anisotropic properties involve mortise and tenon joints (in natural composites such as wood) and
Pi Joints
The number (; spelled out as "pi") is a mathematical constant that is the ratio of a circle's circumference to its diameter, approximately equal to 3.14159. The number appears in many formulas across mathematics and physics. It is an irratio ...
in synthetic composites.
Mechanical Properties of Composites
Particle Reinforcement
In general, particle reinforcement is
strengthening
Chinese food therapy (, also called nutrition therapy and dietary therapy) is a mode of dieting rooted in Chinese beliefs concerning the effects of food on the human organism, and centered on concepts such as eating in moderation. Its basic pr ...
the composites less than
fiber
Fiber or fibre (from la, fibra, links=no) is a natural or artificial substance that is significantly longer than it is wide. Fibers are often used in the manufacture of other materials. The strongest engineering materials often incorpora ...
reinforcement. It is used to enhance the stiffness of the composites while increasing the strength and the
toughness
In materials science and metallurgy, toughness is the ability of a material to absorb energy and plastically deform without fracturing.mechanical properties, they are used in applications in which wear resistance is required. For example, hardness of
cement
A cement is a binder, a chemical substance used for construction that sets, hardens, and adheres to other materials to bind them together. Cement is seldom used on its own, but rather to bind sand and gravel (aggregate) together. Cement m ...
can be increased by reinforcing gravel particles, drastically. Particle reinforcement a highly advantageous method of tuning mechanical properties of materials since it is very easy implement while being low cost.
The elastic modulus of particle-reinforced composites can be expressed as,
where E is the elastic modulus, V is the volume fraction. The subscripts c, p and m are indicating composite, particle and matrix, respectively. is a constant can be found empirically.
Similarly, tensile strength of particle-reinforced composites can be expressed as,
where T.S. is the tensile strength, and is a constant (not equal to ) that can be found empirically.
Continuous Fiber Reinforcement
In general, continuous
fiber
Fiber or fibre (from la, fibra, links=no) is a natural or artificial substance that is significantly longer than it is wide. Fibers are often used in the manufacture of other materials. The strongest engineering materials often incorpora ...
reinforcement is implemented by incorporating a
fiber
Fiber or fibre (from la, fibra, links=no) is a natural or artificial substance that is significantly longer than it is wide. Fibers are often used in the manufacture of other materials. The strongest engineering materials often incorpora ...
as the strong phase into a weak phase, matrix. The reason for the popularity of fiber usage is materials with extraordinary strength can be obtained in their fiber form. Non-metallic fibers are usually showing a very high strength to density ratio compared to metal fibers because of the covalent nature of their bonds. The most famous example of this is carbon fibers that have many applications extending from
sports gear
Sports equipment, sporting equipment, also called sporting goods, are the tools, materials, apparel, and gear used to compete in a sport and varies depending on the sport. The equipment ranges from balls, nets, and protective gear like helmets. ...
to protective equipment to space industries.
The stress on the composite can be expressed in terms of the volume fraction of the fiber and the matrix.
where is the stress, V is the volume fraction. The subscripts c, f and m are indicating composite, fiber and matrix, respectively.
Although the stress–strain behavior of fiber composites can only be determined by testing, there is an expected trend, three stages of the stress–strain curve. The first stage is the region of the stress–strain curve where both fiber and the matrix are elastically deformed. This linearly elastic region can be expressed in the following form.
where is the stress, is the strain, E is the elastic modulus, and V is the volume fraction. The subscripts c, f, and m are indicating composite, fiber, and matrix, respectively.
After passing the elastic region for both fiber and the matrix, the second region of the stress–strain curve] can be observed. In the second region, the fiber is still elastically deformed while the matrix is plastically deformed since the matrix is the weak phase. The instantaneous Elastic modulus, modulus can be determined using the slope of the stress–strain curve in the second region. The relationship between stress and strain can be expressed as,
where is the stress, is the strain, E is the elastic modulus, and V is the volume fraction. The subscripts c, f, and m are indicating composite, fiber, and matrix, respectively. To find the modulus in the second region derivative of this equation can be used since the slope of the curve is equal to the modulus.
In most cases it can be assumed since the second term is much less than the first one.
In reality, the
derivative
In mathematics, the derivative of a function of a real variable measures the sensitivity to change of the function value (output value) with respect to a change in its argument (input value). Derivatives are a fundamental tool of calculus. ...
of stress with respect to strain is not always returning the modulus because of the binding interaction between the fiber and matrix. The strength of the interaction between these two phases can result in changes in the mechanical properties of the composite. The compatibility of the fiber and matrix is a measure of internal stress.
The covalently bonded high strength fibers (e.g. carbon fibers) experience mostly elastic deformation before the fracture since the
plastic deformation
In engineering, deformation refers to the change in size or shape of an object. ''Displacements'' are the ''absolute'' change in position of a point on the object. Deflection is the relative change in external displacements on an object. Strai ...
can happen due to dislocation motion. Whereas, metallic fibers have more space to plastically deform, so their composites exhibit a third stage where both fiber and the matrix are plastically deforming. Metallic fibers have many applications to work at cryogenic temperatures that is one of the advantages of composites with metal fibers over nonmetallic. The stress in this region of the stress–strain curve can be expressed as,
where is the stress, is the strain, E is the elastic modulus, and V is the volume fraction. The subscripts c, f, and m are indicating composite, fiber, and matrix, respectively. and are for fiber and matrix flow stresses respectively. Just after the third region the composite exhibit necking. The necking strain of composite is happened to be between the necking strain of the fiber and the matrix just like other mechanical properties of the composites. The necking strain of the weak phase is delayed by the strong phase. The amount of the delay depends upon the volume fraction of the strong phase.
Thus, the tensile strength of the composite can be expressed in terms of the volume fraction.
where T.S. is the tensile strength, is the stress, is the strain, E is the elastic modulus, and V is the volume fraction. The subscripts c, f, and m are indicating composite, fiber, and matrix, respectively. The composite tensile strength can be expressed as
for is less than or equal to (arbitrary critical value of volume fraction)
for is greater than or equal to
The critical value of volume fraction can be expressed as,
Evidently, the composite tensile strength can be higher than the matrix if is greater than .
Thus, the minimum volume fraction of the fiber can be expressed as,
Although this minimum value is very low in practice, it is very important to know since the reason for the incorporation of continuous fibers is to improve the mechanical properties of the materials/composites, and this value of volume fraction is the threshold of this improvement.
The Effect of Fiber Orientation
Aligned Fibers
A change in the angle between the applied stress and fiber orientation will affect the mechanical properties of fiber-reinforced composites, especially the tensile strength. This angle, , can be used predict the dominant tensile fracture mechanism.
At small angles, , the dominant fracture mechanism is the same as with load-fiber alignment, tensile fracture. The resolved force acting upon the length of the fibers is reduced by a factor of from rotation. . The resolved area on which the fiber experiences the force is increased by a factor of from rotation. . Taking the effective tensile strength to be and the aligned tensile strength .
At moderate angles, , the material experiences shear failure. The effective force direction is reduced with respect to the aligned direction. . The resolved area on which the force acts is . The resulting tensile strength depends on the shear strength of the matrix, .
At extreme angles, , the dominant mode of failure is tensile fracture in the matrix in the perpendicular direction. As in the isostress case of layered composite materials, the strength in this direction is lower than in the aligned direction. The effective areas and forces act perpendicular to the aligned direction so they both scale by . The resolved tensile strength is proportional to the transverse strength, .
The critical angles from which the dominant fracture mechanism changes can be calculated as,
where is the critical angle between longitudinal fracture and shear failure, and is the critical angle between shear failure and transverse fracture.
By ignoring length effects, this model is most accurate for continuous fibers and does not effectively capture the strength-orientation relationship for short fiber reinforced composites. Furthermore, most realistic systems do not experience the local maxima predicted at the critical angles. The Tsai-Hill criterion provides a more complete description of fiber composite tensile strength as a function of orientation angle by coupling the contributing yield stresses: , , and .
Randomly Oriented Fibers
Anisotropy in the tensile strength of fiber reinforced composites can be removed by randomly orienting the fiber directions within the material. It sacrifices the ultimate strength in the aligned direction for an overall, isotropically strengthened material.
Where K is an empirically determined reinforcement factor; similar to the particle reinforcement equation. For fibers with randomly distributed orientations in a plane, , and for a random distribution in 3D, .
Types of Fibers and Their Mechanical Properties
The most common types of fibers used in industry are
glass fiber
Glass fiber ( or glass fibre) is a material consisting of numerous extremely fine fibers of glass.
Glassmakers throughout history have experimented with glass fibers, but mass manufacture of glass fiber was only made possible with the inventi ...
kevlar
Kevlar (para-aramid) is a strong, heat-resistant synthetic fiber, related to other aramids such as Nomex and Technora. Developed by Stephanie Kwolek at DuPont in 1965, the high-strength material was first used commercially in the early 1970s ...
due to their ease of production and availability. Their mechanical properties are very important to know, therefore the table of their mechanical properties is given below to compare them with S97 steel. The angle of fiber orientation is very important because of the anisotropy of fiber composites (please see the section " Physical properties" for a more detailed explanation). The mechanical properties of the composites can be tested using standard
mechanical testing
Mechanical testing covers a wide range of tests, which can be divided broadly into two types:
# those that aim to determine a material's mechanical properties, independent of geometry.
# those that determine the response of a structure to a given ...
methods by positioning the samples at various angles (the standard angles are 0°, 45°, and 90°) with respect to the orientation of fibers within the composites. In general, 0° axial alignment makes composites resistant to longitudinal bending and axial tension/compression, 90° hoop alignment is used to obtain resistance to internal/external pressure, and ± 45° is the ideal choice to obtain resistance against pure torsion.
Mechanical Properties of Fiber Composite Materials
Mechanical Properties of Aerospace Grade & Commercial Grade Carbon Fiber Composites, Fiberglass Composite, and Aluminum Alloy and Steel
This table is demonstrating one of the most important features and advantage of fiber composites over metal, that is specific strength and specific stiffness. Although the steel and the aluminum alloy have comparable strength and stiffness with fiber composites, the specific strength and stiffness of composites are around higher than steel and the aluminum alloy.
Failure
Shock, impact, or repeated cyclic stresses can provoke the laminate to separate at the interface between two layers, a condition known as delamination. Individual fibres can separate from the matrix, for example, fibre pull-out.
Composites can fail on the macroscopic or microscopic scale. Compression failures can happen at both the macro scale or at each individual reinforcing fibre in compression buckling. Tension failures can be net section failures of the part or degradation of the composite at a microscopic scale where one or more of the layers in the composite fail in tension of the matrix or failure of the bond between the matrix and fibres.
Some composites are brittle and possess little reserve strength beyond the initial onset of failure while others may have large deformations and have reserve energy absorbing capacity past the onset of damage. The distinctions in fibres and matrices that are available and the mixtures that can be made with blends leave a very broad range of properties that can be designed into a composite structure. The most famous failure of a brittle ceramic matrix composite occurred when the carbon-carbon composite tile on the leading edge of the wing of the Space Shuttle Columbia fractured when impacted during take-off. It directed to the catastrophic break-up of the vehicle when it re-entered the Earth's atmosphere on 1 February 2003.
Composites have relatively poor bearing strength compared to metals.
Testing
Composites are tested before and after construction to assist in predicting and preventing failures. Pre-construction testing may adopt finite element analysis (FEA) for ply-by-ply analysis of curved surfaces and predicting wrinkling, crimping and dimpling of composites. Materials may be tested during manufacturing and after construction by various non-destructive methods including ultrasonic, thermography, shearography and X-ray radiography, and laser bond inspection for NDT of relative bond strength integrity in a localized area.
See also
*
Aluminium composite panel
A sandwich panel is any structure made of three layers: a low-density core ( PIR, mineral wool, XPS), and a thin skin-layer bonded to each side. Sandwich panels are used in applications where a combination of high structural rigidity and low ...
Chemical vapour infiltration Chemical vapour infiltration (CVI) is a ceramic engineering process whereby matrix material is infiltrated into fibrous preforms by the use of reactive gases at elevated temperature to form fiber-reinforced composites. The earliest use of CVI was th ...
Composite laminates
In materials science, a composite laminate is an assembly of layers of fibrous composite materials which can be joined to provide required engineering properties, including in-plane stiffness, bending stiffness, strength, and coefficient of therm ...
*
Epoxy granite
Epoxy granite, also known as synthetic granite, is a polymer matrix composite and is a mixture of epoxy and granite commonly used as an alternative material for machine tool bases. Epoxy granite is used instead of cast iron and steel for improved ...
Lay-Up process A Lay-Up process is a moulding process for composite materials, in which the final product is obtained by overlapping a specific number of different layers, usually made of continuous polymeric or ceramic fibres and a thermoset polymeric liquid ma ...
*
Nanocomposites
Nanocomposite is a multiphase solid material where one of the phases has one, two or three dimensions of less than 100 nanometers (nm) or structures having nano-scale repeat distances between the different phases that make up the material.
The i ...
Burt Rutan
Elbert Leander "Burt" Rutan (; born June 17, 1943) is a retired American aerospace engineer and entrepreneur noted for his originality in designing light, strong, unusual-looking, and energy-efficient air and space craft. He designed the rec ...
Smart Materials and Structures
''Smart Materials and Structures'' is a monthly peer-reviewed scientific journal covering technical advances in smart materials, systems, structures and device engineering.
The initial editors-in-chief starting in 1992 were Vijay K. Varadan ( Pe ...
*
*
*
*
*
* Handbook of Polymer Composites for Engineers By Leonard Hollaway Published 1994 Woodhead Publishing
* Madbouly, Samy, Chaoqun Zhang, and Michael R. Kessler. Bio-Based Plant Oil Polymers and Composites. William Andrew, 2015.
*