HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, complex projective space is the
projective space In mathematics, the concept of a projective space originated from the visual effect of perspective, where parallel lines seem to meet ''at infinity''. A projective space may thus be viewed as the extension of a Euclidean space, or, more generally ...
with respect to the field of
complex number In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
s. By analogy, whereas the points of a
real projective space In mathematics, real projective space, denoted or is the topological space of lines passing through the origin 0 in the real space It is a compact, smooth manifold of dimension , and is a special case of a Grassmannian space. Basic properti ...
label the lines through the origin of a real
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
, the points of a complex projective space label the ''
complex Complex commonly refers to: * Complexity, the behaviour of a system whose components interact in multiple ways so possible interactions are difficult to describe ** Complex system, a system composed of many components which may interact with each ...
'' lines through the origin of a complex Euclidean space (see
below Below may refer to: *Earth *Ground (disambiguation) *Soil *Floor * Bottom (disambiguation) *Less than *Temperatures below freezing *Hell or underworld People with the surname * Ernst von Below (1863–1955), German World War I general * Fred Belo ...
for an intuitive account). Formally, a complex projective space is the space of complex lines through the origin of an (''n''+1)-dimensional complex
vector space In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
. The space is denoted variously as P(C''n''+1), P''n''(C) or CP''n''. When , the complex projective space CP1 is the
Riemann sphere In mathematics, the Riemann sphere, named after Bernhard Riemann, is a Mathematical model, model of the extended complex plane (also called the closed complex plane): the complex plane plus one point at infinity. This extended plane represents ...
, and when , CP2 is the
complex projective plane In mathematics, the complex projective plane, usually denoted or is the two-dimensional complex projective space. It is a complex manifold of complex dimension 2, described by three complex coordinates :(Z_1,Z_2,Z_3) \in \C^3, \qquad (Z_1,Z_2, ...
(see there for a more elementary discussion). Complex projective space was first introduced by as an instance of what was then known as the "geometry of position", a notion originally due to
Lazare Carnot Lazare Nicolas Marguerite, Comte Carnot (; 13 May 1753 – 2 August 1823) was a French mathematician, physicist, military officer, politician and a leading member of the Committee of Public Safety during the French Revolution. His military refor ...
, a kind of
synthetic geometry Synthetic geometry (sometimes referred to as axiomatic geometry or even pure geometry) is geometry without the use of coordinates. It relies on the axiomatic method for proving all results from a few basic properties initially called postulates ...
that included other projective geometries as well. Subsequently, near the turn of the 20th century it became clear to the Italian school of algebraic geometry that the complex projective spaces were the most natural domains in which to consider the solutions of
polynomial In mathematics, a polynomial is a Expression (mathematics), mathematical expression consisting of indeterminate (variable), indeterminates (also called variable (mathematics), variables) and coefficients, that involves only the operations of addit ...
equations –
algebraic varieties Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. ...
. In modern times, both the
topology Topology (from the Greek language, Greek words , and ) is the branch of mathematics concerned with the properties of a Mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformat ...
and geometry of complex projective space are well understood and closely related to that of the
sphere A sphere (from Ancient Greek, Greek , ) is a surface (mathematics), surface analogous to the circle, a curve. In solid geometry, a sphere is the Locus (mathematics), set of points that are all at the same distance from a given point in three ...
. Indeed, in a certain sense the (2''n''+1)-sphere can be regarded as a family of circles parametrized by CP''n'': this is the Hopf fibration. Complex projective space carries a ( Kähler)
metric Metric or metrical may refer to: Measuring * Metric system, an internationally adopted decimal system of measurement * An adjective indicating relation to measurement in general, or a noun describing a specific type of measurement Mathematics ...
, called the Fubini–Study metric, in terms of which it is a
Hermitian symmetric space In mathematics, a Hermitian symmetric space is a Hermitian manifold which at every point has an inversion symmetry preserving the Hermitian structure. First studied by Élie Cartan, they form a natural generalization of the notion of Riemannian ...
of rank 1. Complex projective space has many applications in both mathematics and
quantum physics Quantum mechanics is the fundamental physical Scientific theory, theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Addison-Wesley, 1989, It is ...
. In
algebraic geometry Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; th ...
, complex projective space is the home of
projective varieties In algebraic geometry, a projective variety is an algebraic variety that is a closed subvariety of a projective space. That is, it is the zero-locus in \mathbb^n of some finite family of homogeneous polynomials that generate a prime ideal, the ...
, a well-behaved class of
algebraic varieties Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. ...
. In topology, the complex projective space plays an important role as a
classifying space In mathematics, specifically in homotopy theory, a classifying space ''BG'' of a topological group ''G'' is the quotient of a weakly contractible space ''EG'' (i.e., a topological space all of whose homotopy groups are trivial) by a proper free ...
for complex
line bundle In mathematics, a line bundle expresses the concept of a line that varies from point to point of a space. For example, a curve in the plane having a tangent line at each point determines a varying line: the ''tangent bundle'' is a way of organis ...
s: families of complex lines parametrized by another space. In this context, the infinite union of projective spaces (
direct limit In mathematics, a direct limit is a way to construct a (typically large) object from many (typically smaller) objects that are put together in a specific way. These objects may be groups, rings, vector spaces or in general objects from any cate ...
), denoted CP, is the classifying space
K(Z,2) K, or k, is the eleventh letter of the Latin alphabet, used in the modern English alphabet, the alphabets of other western European languages and others worldwide. Its name in English is ''kay'' (pronounced ), plural ''kays''. The letter ...
. In quantum physics, the
wave function In quantum physics, a wave function (or wavefunction) is a mathematical description of the quantum state of an isolated quantum system. The most common symbols for a wave function are the Greek letters and (lower-case and capital psi (letter) ...
associated to a
pure state In quantum physics, a quantum state is a mathematical entity that embodies the knowledge of a quantum system. Quantum mechanics specifies the construction, evolution, and measurement of a quantum state. The result is a prediction for the system re ...
of a quantum mechanical system is a
probability amplitude In quantum mechanics, a probability amplitude is a complex number used for describing the behaviour of systems. The square of the modulus of this quantity at a point in space represents a probability density at that point. Probability amplitu ...
, meaning that it has unit norm, and has an inessential overall phase: that is, the wave function of a pure state is naturally a point in the
projective Hilbert space In mathematics and the foundations of quantum mechanics, the projective Hilbert space or ray space \mathbf(H) of a complex Hilbert space H is the set of equivalence classes /math> of non-zero vectors v \in H, for the equivalence relation \sim on H ...
of the state space. Complex projective manifold is 2n dimensional space or it is n dimensional complex space.


Introduction

The notion of a projective plane arises out of the idea of perspection in geometry and art: that it is sometimes useful to include in the Euclidean plane an additional "imaginary" line that represents the horizon that an artist, painting the plane, might see. Following each direction from the origin, there is a different point on the horizon, so the horizon can be thought of as the set of all directions from the origin. The Euclidean plane, together with its horizon, is called the
real projective plane In mathematics, the real projective plane, denoted or , is a two-dimensional projective space, similar to the familiar Euclidean plane in many respects but without the concepts of distance, circles, angle measure, or parallelism. It is the sett ...
, and the horizon is sometimes called a
line at infinity In geometry and topology, the line at infinity is a projective line that is added to the affine plane in order to give closure to, and remove the exceptional cases from, the incidence properties of the resulting projective plane. The line at ...
. By the same construction, projective spaces can be considered in higher dimensions. For instance, the real projective 3-space is a Euclidean space together with a
plane at infinity In projective geometry, a plane at infinity is the hyperplane at infinity of a three dimensional projective space or to any plane contained in the hyperplane at infinity of any projective space of higher dimension. This article will be concerned ...
that represents the horizon that an artist (who must, necessarily, live in four dimensions) would see. These
real projective space In mathematics, real projective space, denoted or is the topological space of lines passing through the origin 0 in the real space It is a compact, smooth manifold of dimension , and is a special case of a Grassmannian space. Basic properti ...
s can be constructed in a slightly more rigorous way as follows. Here, let R''n''+1 denote the
real coordinate space In mathematics, the real coordinate space or real coordinate ''n''-space, of dimension , denoted or , is the set of all ordered -tuples of real numbers, that is the set of all sequences of real numbers, also known as '' coordinate vectors''. ...
of ''n''+1 dimensions, and regard the landscape to be painted as a
hyperplane In geometry, a hyperplane is a generalization of a two-dimensional plane in three-dimensional space to mathematical spaces of arbitrary dimension. Like a plane in space, a hyperplane is a flat hypersurface, a subspace whose dimension is ...
in this space. Suppose that the eye of the artist is the origin in R''n''+1. Then along each line through his eye, there is a point of the landscape or a point on its horizon. Thus the real projective space is the space of lines through the origin in R''n''+1. Without reference to coordinates, this is the space of lines through the origin in an (''n''+1)-dimensional real
vector space In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
. To describe the complex projective space in an analogous manner requires a generalization of the idea of vector, line, and direction. Imagine that instead of standing in a real Euclidean space, the artist is standing in a complex Euclidean space C''n''+1 (which has real dimension 2''n''+2) and the landscape is a ''complex'' hyperplane (of real dimension 2''n''). Unlike the case of real Euclidean space, in the complex case there are directions in which the artist can look which do not see the landscape (because it does not have high enough dimension). However, in a complex space, there is an additional "phase" associated with the directions through a point, and by adjusting this phase the artist can guarantee that they typically see the landscape. The "horizon" is then the space of directions, but such that two directions are regarded as "the same" if they differ only by a phase. The complex projective space is then the landscape (C''n'') with the horizon attached "at infinity". Just like the real case, the complex projective space is the space of directions through the origin of C''n''+1, where two directions are regarded as the same if they differ by a phase.


Construction

Complex projective space is a
complex manifold In differential geometry and complex geometry, a complex manifold is a manifold with a ''complex structure'', that is an atlas (topology), atlas of chart (topology), charts to the open unit disc in the complex coordinate space \mathbb^n, such th ...
that may be described by ''n'' + 1 complex coordinates as :Z=(Z_1,Z_2,\ldots,Z_) \in \mathbb^, \qquad (Z_1,Z_2,\ldots,Z_)\neq (0,0,\ldots,0) where the tuples differing by an overall rescaling are identified: :(Z_1,Z_2,\ldots,Z_) \equiv (\lambda Z_1,\lambda Z_2, \ldots,\lambda Z_); \quad \lambda\in \mathbb,\qquad \lambda \neq 0. That is, these are
homogeneous coordinates In mathematics, homogeneous coordinates or projective coordinates, introduced by August Ferdinand Möbius in his 1827 work , are a system of coordinates used in projective geometry, just as Cartesian coordinates are used in Euclidean geometry. ...
in the traditional sense of
projective geometry In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary Euclidean geometry, projective geometry has a different setting (''p ...
. The point set CP''n'' is covered by the patches U_i=\. In ''U''''i'', one can define a coordinate system by :z_1 = Z_1/Z_i, \quad z_2=Z_2/Z_i, \quad \dots, \quad z_=Z_/Z_i, \quad z_i = Z_/Z_i, \quad \dots, \quad z_n=Z_/Z_i. The coordinate transitions between two different such charts ''U''''i'' and ''U''''j'' are
holomorphic function In mathematics, a holomorphic function is a complex-valued function of one or more complex variables that is complex differentiable in a neighbourhood of each point in a domain in complex coordinate space . The existence of a complex de ...
s (in fact they are fractional linear transformations). Thus CP''n'' carries the structure of a
complex manifold In differential geometry and complex geometry, a complex manifold is a manifold with a ''complex structure'', that is an atlas (topology), atlas of chart (topology), charts to the open unit disc in the complex coordinate space \mathbb^n, such th ...
of complex dimension ''n'', and ''
a fortiori ''Argumentum a fortiori'' (literally "argument from the stronger eason) (, ) is a form of argumentation that draws upon existing confidence in a proposition to argue in favor of a second proposition that is held to be implicit in, and even more c ...
'' the structure of a real
differentiable manifold In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One ...
of real dimension 2''n''. One may also regard CP''n'' as a
quotient In arithmetic, a quotient (from 'how many times', pronounced ) is a quantity produced by the division of two numbers. The quotient has widespread use throughout mathematics. It has two definitions: either the integer part of a division (in th ...
of the unit 2''n'' + 1
sphere A sphere (from Ancient Greek, Greek , ) is a surface (mathematics), surface analogous to the circle, a curve. In solid geometry, a sphere is the Locus (mathematics), set of points that are all at the same distance from a given point in three ...
in C''n''+1 under the action of
U(1) In mathematics, the circle group, denoted by \mathbb T or , is the multiplicative group of all complex numbers with absolute value 1, that is, the unit circle in the complex plane or simply the unit complex numbers \mathbb T = \. The circle g ...
: :CP''n'' = ''S''2''n''+1/U(1). This is because every line in C''n''+1 intersects the unit sphere in a
circle A circle is a shape consisting of all point (geometry), points in a plane (mathematics), plane that are at a given distance from a given point, the Centre (geometry), centre. The distance between any point of the circle and the centre is cal ...
. By first projecting to the unit sphere and then identifying under the natural action of U(1) one obtains CP''n''. For ''n'' = 1 this construction yields the classical Hopf bundle S^3\to S^2. From this perspective, the differentiable structure on CP''n'' is induced from that of ''S''2''n''+1, being the quotient of the latter by a
compact group In mathematics, a compact (topological) group is a topological group whose topology realizes it as a compact topological space (when an element of the group is operated on, the result is also within the group). Compact groups are a natural gen ...
that acts properly.


Topology

The topology of CP''n'' is determined inductively by the following cell decomposition. Let ''H'' be a fixed hyperplane through the origin in C''n''+1. Under the projection map , ''H'' goes into a subspace that is homeomorphic to CP''n''−1. The complement of the image of ''H'' in CP''n'' is homeomorphic to C''n''. Thus CP''n'' arises by attaching a 2''n''-cell to CP''n''−1: :\mathbf^n = \mathbf^\cup \mathbf^n. Alternatively, if the 2''n''-cell is regarded instead as the open unit ball in C''n'', then the attaching map is the Hopf fibration of the boundary. An analogous inductive cell decomposition is true for all of the projective spaces; see .


CW-decomposition

One useful way to construct the complex projective spaces \mathbf^n is through a recursive construction using CW-complexes. Recall that there is a homeomorphism \mathbf^1 \cong S^2 to the 2-sphere, giving the first space. We can then induct on the cells to get a pushout map \begin S^3 & \hookrightarrow & D^4 \\ \downarrow & & \downarrow \\ \mathbf^1 & \to & \mathbf^2 \end where D^4 is the four ball, and S^3 \to \mathbf^1 represents the generator in \pi_3(S^2) (hence it is homotopy equivalent to the Hopf map). We can then inductively construct the spaces as pushout diagrams \begin S^ & \hookrightarrow & D^ \\ \downarrow & & \downarrow \\ \mathbf^ & \to & \mathbf^n \end where S^ \to \mathbf^ represents an element in \begin \pi_(\mathbf^) &\cong \pi_(S^) \\ &\cong \mathbb/2 \end The isomorphism of homotopy groups is described below, and the isomorphism of homotopy groups is a standard calculation in
stable homotopy theory In mathematics, stable homotopy theory is the part of homotopy theory (and thus algebraic topology) concerned with all structure and phenomena that remain after sufficiently many applications of the suspension functor. A founding result was the ...
(which can be done with the Serre spectral sequence, Freudenthal suspension theorem, and the Postnikov tower). The map comes from the
fiber bundle In mathematics, and particularly topology, a fiber bundle ( ''Commonwealth English'': fibre bundle) is a space that is a product space, but may have a different topological structure. Specifically, the similarity between a space E and a pr ...
S^1 \hookrightarrow S^ \twoheadrightarrow \mathbf^ giving a non-contractible map, hence it represents the generator in \mathbb/2. Otherwise, there would be a homotopy equivalence \mathbf^n \simeq \mathbf^\times D^n, but then it would be homotopy equivalent to S^2, a contradiction which can be seen by looking at the homotopy groups of the space.


Point-set topology

Complex projective space is
compact Compact as used in politics may refer broadly to a pact or treaty; in more specific cases it may refer to: * Interstate compact, a type of agreement used by U.S. states * Blood compact, an ancient ritual of the Philippines * Compact government, a t ...
and connected, being a quotient of a compact, connected space.


Homotopy groups

From the fiber bundle :S^1 \hookrightarrow S^ \twoheadrightarrow \mathbf^n or more suggestively :U(1) \hookrightarrow S^ \twoheadrightarrow \mathbf^n CP''n'' is
simply connected In topology, a topological space is called simply connected (or 1-connected, or 1-simply connected) if it is path-connected and every Path (topology), path between two points can be continuously transformed into any other such path while preserving ...
. Moreover, by the long exact homotopy sequence, the second homotopy group is , and all the higher homotopy groups agree with those of ''S''2''n''+1: for all ''k'' > 2.


Homology

In general, the
algebraic topology Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariant (mathematics), invariants that classification theorem, classify topological spaces up t ...
of CP''n'' is based on the rank of the
homology group In mathematics, the term homology, originally introduced in algebraic topology, has three primary, closely-related usages. The most direct usage of the term is to take the ''homology of a chain complex'', resulting in a sequence of abelian grou ...
s being zero in odd dimensions; also ''H''2''i''(CP''n'', Z) is infinite cyclic for ''i'' = 0 to ''n''. Therefore, the
Betti number In algebraic topology, the Betti numbers are used to distinguish topological spaces based on the connectivity of ''n''-dimensional simplicial complexes. For the most reasonable finite-dimensional spaces (such as compact manifolds, finite simplicia ...
s run :1, 0, 1, 0, ..., 0, 1, 0, 0, 0, ... That is, 0 in odd dimensions, 1 in even dimensions 0 through 2n. The
Euler characteristic In mathematics, and more specifically in algebraic topology and polyhedral combinatorics, the Euler characteristic (or Euler number, or Euler–Poincaré characteristic) is a topological invariant, a number that describes a topological space's ...
of CP''n'' is therefore ''n'' + 1. By
Poincaré duality In mathematics, the Poincaré duality theorem, named after Henri Poincaré, is a basic result on the structure of the homology (mathematics), homology and cohomology group (mathematics), groups of manifolds. It states that if ''M'' is an ''n''-dim ...
the same is true for the ranks of the
cohomology group In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed ...
s. In the case of cohomology, one can go further, and identify the
graded ring In mathematics, in particular abstract algebra, a graded ring is a ring such that the underlying additive group is a direct sum of abelian groups R_i such that . The index set is usually the set of nonnegative integers or the set of integers, but ...
structure, for
cup product In mathematics, specifically in algebraic topology, the cup product is a method of adjoining two cocycles of degree p and q to form a composite cocycle of degree p+q. This defines an associative (and distributive) graded commutative product opera ...
; the generator of ''H''2(CPn, Z) is the class associated to a
hyperplane In geometry, a hyperplane is a generalization of a two-dimensional plane in three-dimensional space to mathematical spaces of arbitrary dimension. Like a plane in space, a hyperplane is a flat hypersurface, a subspace whose dimension is ...
, and this is a ring generator, so that the ring is isomorphic with :Z 'T''(''T''''n''+1), with ''T'' a degree two generator. This implies also that the
Hodge number In mathematics, Hodge theory, named after W. V. D. Hodge, is a method for studying the cohomology groups of a smooth manifold ''M'' using partial differential equations. The key observation is that, given a Riemannian metric on ''M'', every coho ...
''h''''i'',''i'' = 1, and all the others are zero. See .


''K''-theory

It follows from induction and
Bott periodicity In mathematics, the Bott periodicity theorem describes a periodicity in the homotopy groups of classical groups, discovered by , which proved to be of foundational significance for much further research, in particular in K-theory of stable compl ...
that :K_\mathbf^*(\mathbf^n) = K_\mathbf^0(\mathbf^n) = \mathbf (H-1)^. The
tangent bundle A tangent bundle is the collection of all of the tangent spaces for all points on a manifold, structured in a way that it forms a new manifold itself. Formally, in differential geometry, the tangent bundle of a differentiable manifold M is ...
satisfies :T\mathbf^n \oplus \vartheta^1 = H^, where \vartheta^1 denotes the trivial line bundle, from the Euler sequence. From this, the
Chern class In mathematics, in particular in algebraic topology, differential geometry and algebraic geometry, the Chern classes are characteristic classes associated with complex vector bundles. They have since become fundamental concepts in many branches ...
es and characteristic numbers can be calculated explicitly.


Classifying space

There is a space \mathbf^\infty which, in a sense, is the inductive limit of \mathbf^n as n \to \infty. It is BU(1), the
classifying space In mathematics, specifically in homotopy theory, a classifying space ''BG'' of a topological group ''G'' is the quotient of a weakly contractible space ''EG'' (i.e., a topological space all of whose homotopy groups are trivial) by a proper free ...
of
U(1) In mathematics, the circle group, denoted by \mathbb T or , is the multiplicative group of all complex numbers with absolute value 1, that is, the unit circle in the complex plane or simply the unit complex numbers \mathbb T = \. The circle g ...
, the circle group, in the sense of
homotopy theory In mathematics, homotopy theory is a systematic study of situations in which Map (mathematics), maps can come with homotopy, homotopies between them. It originated as a topic in algebraic topology, but nowadays is learned as an independent discipli ...
, and so classifies complex
line bundle In mathematics, a line bundle expresses the concept of a line that varies from point to point of a space. For example, a curve in the plane having a tangent line at each point determines a varying line: the ''tangent bundle'' is a way of organis ...
s. Equivalently it accounts for the first
Chern class In mathematics, in particular in algebraic topology, differential geometry and algebraic geometry, the Chern classes are characteristic classes associated with complex vector bundles. They have since become fundamental concepts in many branches ...
. This can be seen heuristically by looking at the fiber bundle maps S^1 \hookrightarrow S^ \twoheadrightarrow \mathbf^n and n \to \infty. This gives a fiber bundle (called the universal circle bundle) S^1 \hookrightarrow S^\infty \twoheadrightarrow \mathbf^\infty constructing this space. Note using the long
exact sequence In mathematics, an exact sequence is a sequence of morphisms between objects (for example, groups, rings, modules, and, more generally, objects of an abelian category) such that the image of one morphism equals the kernel of the next. Definit ...
of homotopy groups, we have \pi_2(\mathbf^\infty) = \pi_1(S^1) hence \mathbf^\infty is an
Eilenberg–MacLane space In mathematics, specifically algebraic topology, an Eilenberg–MacLane spaceSaunders Mac Lane originally spelt his name "MacLane" (without a space), and co-published the papers establishing the notion of Eilenberg–MacLane spaces under this name. ...
, a K(\mathbb,2). Because of this fact, and Brown's representability theorem, we have the following isomorphism H^2(X;\mathbb) \cong ,\mathbf^\infty/math> for any nice CW-complex X. Moreover, from the theory of
Chern classes In mathematics, in particular in algebraic topology, differential geometry and topology, differential geometry and algebraic geometry, the Chern classes are characteristic classes associated with complex vector bundle, complex vector bundles. They ...
, every complex line bundle L \to X can be represented as a pullback of the universal line bundle on \mathbf^\infty, meaning there is a pullback square \begin L & \to & \mathcal \\ \downarrow & &\downarrow \\ X & \to & \mathbf^\infty \end where \mathcal \to \mathbf^\infty is the associated vector bundle of the principal U(1)-bundle S^\infty \to \mathbf^\infty. See, for instance, and .


Differential geometry

The natural metric on CP''n'' is the Fubini–Study metric, and its holomorphic isometry group is the projective unitary group PU(''n''+1), where the stabilizer of a point is :\mathrm(1\times \mathrm(n)) \cong \mathrm(n). It is a
Hermitian symmetric space In mathematics, a Hermitian symmetric space is a Hermitian manifold which at every point has an inversion symmetry preserving the Hermitian structure. First studied by Élie Cartan, they form a natural generalization of the notion of Riemannian ...
, represented as a coset space :U(n+1)/(U(1) \times U(n)) \cong SU(n+1)/S(U(1) \times U(n)). The geodesic symmetry at a point ''p'' is the unitary transformation that fixes ''p'' and is the negative identity on the orthogonal complement of the line represented by ''p''.


Geodesics

Through any two points ''p'', ''q'' in complex projective space, there passes a unique ''complex'' line (a CP1). A
great circle In mathematics, a great circle or orthodrome is the circular intersection of a sphere and a plane passing through the sphere's center point. Discussion Any arc of a great circle is a geodesic of the sphere, so that great circles in spher ...
of this complex line that contains ''p'' and ''q'' is a
geodesic In geometry, a geodesic () is a curve representing in some sense the locally shortest path ( arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a conn ...
for the Fubini–Study metric. In particular, all of the geodesics are closed (they are circles), and all have equal length. (This is always true of Riemannian globally symmetric spaces of rank 1.) The
cut locus In differential geometry, the cut locus of a point on a manifold is the closure of the set of all other points on the manifold that are connected to by two or more distinct shortest geodesics. More generally, the cut locus of a closed set on ...
of any point ''p'' is equal to a hyperplane CP''n''−1. This is also the set of fixed points of the geodesic symmetry at ''p'' (less ''p'' itself). See .


Sectional curvature pinching

It has
sectional curvature In Riemannian geometry, the sectional curvature is one of the ways to describe the curvature of Riemannian manifolds. The sectional curvature ''K''(σ''p'') depends on a two-dimensional linear subspace σ''p'' of the tangent space at a po ...
ranging from 1/4 to 1, and is the roundest manifold that is not a sphere (or covered by a sphere): by the 1/4-pinched sphere theorem, any complete, simply connected
Riemannian manifold In differential geometry, a Riemannian manifold is a geometric space on which many geometric notions such as distance, angles, length, volume, and curvature are defined. Euclidean space, the N-sphere, n-sphere, hyperbolic space, and smooth surf ...
with curvature strictly between 1/4 and 1 is diffeomorphic to the sphere. Complex projective space shows that 1/4 is sharp. Conversely, if a complete simply connected Riemannian manifold has sectional curvatures in the closed interval /4,1 then it is either diffeomorphic to the sphere, or isometric to the complex projective space, the
quaternionic projective space In mathematics, quaternionic projective space is an extension of the ideas of real projective space and complex projective space, to the case where coordinates lie in the ring of quaternions \mathbb. Quaternionic projective space of dimension ''n'' ...
, or else the Cayley plane F4/Spin(9); see .


Spin structure

The odd-dimensional projective spaces can be given a
spin structure In differential geometry, a spin structure on an orientable Riemannian manifold allows one to define associated spinor bundles, giving rise to the notion of a spinor in differential geometry. Spin structures have wide applications to mathemati ...
, the even-dimensional ones cannot.


Algebraic geometry

Complex projective space is a special case of a
Grassmannian In mathematics, the Grassmannian \mathbf_k(V) (named in honour of Hermann Grassmann) is a differentiable manifold that parameterizes the set of all k-dimension (vector space), dimensional linear subspaces of an n-dimensional vector space V over a ...
, and is a
homogeneous space In mathematics, a homogeneous space is, very informally, a space that looks the same everywhere, as you move through it, with movement given by the action of a group. Homogeneous spaces occur in the theories of Lie groups, algebraic groups and ...
for various
Lie group In mathematics, a Lie group (pronounced ) is a group (mathematics), group that is also a differentiable manifold, such that group multiplication and taking inverses are both differentiable. A manifold is a space that locally resembles Eucli ...
s. It is a
Kähler manifold In mathematics and especially differential geometry, a Kähler manifold is a manifold with three mutually compatible structures: a complex structure, a Riemannian structure, and a symplectic structure. The concept was first studied by Jan Arnol ...
carrying the Fubini–Study metric, which is essentially determined by symmetry properties. It also plays a central role in
algebraic geometry Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; th ...
; by Chow's theorem, any compact complex
submanifold In mathematics, a submanifold of a manifold M is a subset S which itself has the structure of a manifold, and for which the inclusion map S \rightarrow M satisfies certain properties. There are different types of submanifolds depending on exactly ...
of CP''n'' is the zero locus of a finite number of polynomials, and is thus a projective
algebraic variety Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the solution set, set of solutions of a system of polynomial equations over the real number, ...
. See


Zariski topology

In
algebraic geometry Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; th ...
, complex projective space can be equipped with another topology known as the
Zariski topology In algebraic geometry and commutative algebra, the Zariski topology is a topology defined on geometric objects called varieties. It is very different from topologies that are commonly used in real or complex analysis; in particular, it is not ...
. Let denote the
commutative ring In mathematics, a commutative ring is a Ring (mathematics), ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring prope ...
of polynomials in the (''n''+1) variables ''Z''0,...,''Z''''n''. This ring is graded by the total degree of each polynomial: :S = \bigoplus_^\infty S_n. Define a subset of CP''n'' to be ''closed'' if it is the simultaneous solution set of a collection of homogeneous polynomials. Declaring the complements of the closed sets to be open, this defines a topology (the Zariski topology) on CP''n''.


Structure as a scheme

Another construction of CP''n'' (and its Zariski topology) is possible. Let ''S''+ ⊂ ''S'' be the ideal spanned by the homogeneous polynomials of positive degree: :\bigoplus_S_n. Define Proj ''S'' to be the set of all
homogeneous Homogeneity and heterogeneity are concepts relating to the uniformity of a substance, process or image. A homogeneous feature is uniform in composition or character (i.e., color, shape, size, weight, height, distribution, texture, language, i ...
prime ideal In algebra, a prime ideal is a subset of a ring (mathematics), ring that shares many important properties of a prime number in the ring of Integer#Algebraic properties, integers. The prime ideals for the integers are the sets that contain all th ...
s in ''S'' that do not contain ''S''+. Call a subset of Proj ''S'' closed if it has the form :V(I) = \ for some ideal ''I'' in ''S''. The complements of these closed sets define a topology on Proj ''S''. The ring ''S'', by localization at a prime ideal, determines a
sheaf Sheaf may refer to: * Sheaf (agriculture), a bundle of harvested cereal stems * Sheaf (mathematics) In mathematics, a sheaf (: sheaves) is a tool for systematically tracking data (such as sets, abelian groups, rings) attached to the open s ...
of
local ring In mathematics, more specifically in ring theory, local rings are certain rings that are comparatively simple, and serve to describe what is called "local behaviour", in the sense of functions defined on algebraic varieties or manifolds, or of ...
s on Proj ''S''. The space Proj ''S'', together with its topology and sheaf of local rings, is a scheme. The subset of closed points of Proj ''S'' is homeomorphic to CP''n'' with its Zariski topology. Local sections of the sheaf are identified with the
rational function In mathematics, a rational function is any function that can be defined by a rational fraction, which is an algebraic fraction such that both the numerator and the denominator are polynomials. The coefficients of the polynomials need not be ...
s of total degree zero on CP''n''.


Line bundles

All line bundles on complex projective space can be obtained by the following construction. A function is called
homogeneous Homogeneity and heterogeneity are concepts relating to the uniformity of a substance, process or image. A homogeneous feature is uniform in composition or character (i.e., color, shape, size, weight, height, distribution, texture, language, i ...
of degree ''k'' if :f(\lambda z) = \lambda^k f(z) for all and . More generally, this definition makes sense in
cones In geometry, a cone is a three-dimensional figure that tapers smoothly from a flat base (typically a circle) to a point not contained in the base, called the ''apex'' or '' vertex''. A cone is formed by a set of line segments, half-lines, ...
in . A set is called a cone if, whenever , then for all ; that is, a subset is a cone if it contains the complex line through each of its points. If is an open set (in either the analytic topology or the
Zariski topology In algebraic geometry and commutative algebra, the Zariski topology is a topology defined on geometric objects called varieties. It is very different from topologies that are commonly used in real or complex analysis; in particular, it is not ...
), let be the cone over ''U'': the preimage of ''U'' under the projection . Finally, for each integer ''k'', let ''O''(''k'')(''U'') be the set of functions that are homogeneous of degree ''k'' in ''V''. This defines a
sheaf Sheaf may refer to: * Sheaf (agriculture), a bundle of harvested cereal stems * Sheaf (mathematics) In mathematics, a sheaf (: sheaves) is a tool for systematically tracking data (such as sets, abelian groups, rings) attached to the open s ...
of sections of a certain line bundle, denoted by ''O''(''k''). In the special case , the bundle ''O''(−1) is called the
tautological line bundle In mathematics, the tautological bundle is a vector bundle occurring over a Grassmannian in a natural tautological way: for a Grassmannian of k- dimensional subspaces of V, given a point in the Grassmannian corresponding to a k-dimensional vector s ...
. It is equivalently defined as the subbundle of the product :\mathbf^\times\mathbf^n\to \mathbf^n whose fiber over is the set :\. These line bundles can also be described in the language of divisors. Let ''H'' = CP''n''−1 be a given complex hyperplane in CP''n''. The space of
meromorphic function In the mathematical field of complex analysis, a meromorphic function on an open subset ''D'' of the complex plane is a function that is holomorphic on all of ''D'' ''except'' for a set of isolated points, which are ''poles'' of the function. ...
s on CP''n'' with at most a simple pole along ''H'' (and nowhere else) is a one-dimensional space, denoted by ''O''(''H''), and called the hyperplane bundle. The dual bundle is denoted ''O''(−''H''), and the ''k''th tensor power of ''O''(''H'') is denoted by ''O''(''kH''). This is the sheaf generated by holomorphic multiples of a meromorphic function with a pole of order ''k'' along ''H''. It turns out that :O(kH) \cong O(k). Indeed, if is a linear defining function for ''H'', then ''L''−''k'' is a meromorphic section of ''O''(''k''), and locally the other sections of ''O''(''k'') are multiples of this section. Since , the line bundles on CP''n'' are classified up to isomorphism by their
Chern class In mathematics, in particular in algebraic topology, differential geometry and algebraic geometry, the Chern classes are characteristic classes associated with complex vector bundles. They have since become fundamental concepts in many branches ...
es, which are integers: they lie in . In fact, the first Chern classes of complex projective space are generated under
Poincaré duality In mathematics, the Poincaré duality theorem, named after Henri Poincaré, is a basic result on the structure of the homology (mathematics), homology and cohomology group (mathematics), groups of manifolds. It states that if ''M'' is an ''n''-dim ...
by the homology class associated to a hyperplane ''H''. The line bundle ''O''(''kH'') has Chern class ''k''. Hence every holomorphic line bundle on CP''n'' is a tensor power of ''O''(''H'') or ''O''(−''H''). In other words, the
Picard group In mathematics, the Picard group of a ringed space ''X'', denoted by Pic(''X''), is the group of isomorphism classes of invertible sheaves (or line bundles) on ''X'', with the group operation being tensor product. This construction is a global ver ...
of CP''n'' is generated as an abelian group by the hyperplane class 'H''.


See also

* Gromov's inequality for complex projective space *
Projective Hilbert space In mathematics and the foundations of quantum mechanics, the projective Hilbert space or ray space \mathbf(H) of a complex Hilbert space H is the set of equivalence classes /math> of non-zero vectors v \in H, for the equivalence relation \sim on H ...
*
Quaternionic projective space In mathematics, quaternionic projective space is an extension of the ideas of real projective space and complex projective space, to the case where coordinates lie in the ring of quaternions \mathbb. Quaternionic projective space of dimension ''n'' ...
*
Real projective space In mathematics, real projective space, denoted or is the topological space of lines passing through the origin 0 in the real space It is a compact, smooth manifold of dimension , and is a special case of a Grassmannian space. Basic properti ...
*
Complex affine space Affine geometry, broadly speaking, is the study of the geometrical properties of lines, planes, and their higher dimensional analogs, in which a notion of "parallel" is retained, but no metrical notions of distance or angle are. Affine spaces diff ...
*
K3 surface In mathematics, a complex analytic K3 surface is a compact connected complex manifold of dimension 2 with а trivial canonical bundle and irregularity of a surface, irregularity zero. An (algebraic) K3 surface over any field (mathematics), field ...


References

* . * . *. * . * . * * . * . * . * . {{DEFAULTSORT:Complex Projective Space Algebraic varieties Complex manifolds Projective geometry