Poincaré Duality
In mathematics, the Poincaré duality theorem, named after Henri Poincaré, is a basic result on the structure of the homology (mathematics), homology and cohomology group (mathematics), groups of manifolds. It states that if ''M'' is an ''n''-dimensional Orientability, oriented closed manifold (Compact space, compact and without boundary), then the ''k''th cohomology group of ''M'' is Group isomorphism, isomorphic to the th homology group of ''M'', for all integers ''k'' : H^k(M) \cong H_(M). Poincaré duality holds for any coefficient ring (mathematics), ring, so long as one has taken an orientation with respect to that coefficient ring; in particular, since every manifold has a unique orientation mod 2, Poincaré duality holds mod 2 without any assumption of orientation. History A form of Poincaré duality was first stated, without proof, by Henri Poincaré in 1893. It was stated in terms of Betti numbers: The ''k''th and th Betti numbers of a closed (i.e., compact and witho ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cup Product
In mathematics, specifically in algebraic topology, the cup product is a method of adjoining two cocycles of degree p and q to form a composite cocycle of degree p+q. This defines an associative (and distributive) graded commutative product operation in cohomology, turning the cohomology of a space X into a graded ring, H^*(X), called the cohomology ring. The cup product was introduced in work of J. W. Alexander, Eduard Čech and Hassler Whitney from 1935–1938, and, in full generality, by Samuel Eilenberg in 1944. Definition In singular cohomology, the cup product is a construction giving a product on the graded cohomology ring H^*(X) of a topological space X. The construction starts with a product of cochains: if \alpha^p is a p-cochain and \beta^q is a q-cochain, then :(\alpha^p \smile \beta^q)(\sigma) = \alpha^p(\sigma \circ \iota_) \cdot \beta^q(\sigma \circ \iota_) where \sigma is a singular (p+q)- simplex and \iota_S , S \subset \ is the canonical embeddi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Natural Transformation
In category theory, a branch of mathematics, a natural transformation provides a way of transforming one functor into another while respecting the internal structure (i.e., the composition of morphisms) of the categories involved. Hence, a natural transformation can be considered to be a "morphism of functors". Informally, the notion of a natural transformation states that a particular map between functors can be done consistently over an entire category. Indeed, this intuition can be formalized to define so-called functor categories. Natural transformations are, after categories and functors, one of the most fundamental notions of category theory and consequently appear in the majority of its applications. Definition If F and G are functors between the categories C and D (both from C to D), then a natural transformation \eta from F to G is a family of morphisms that satisfies two requirements. # The natural transformation must associate, to every object X in C, a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Covariant Functor
In mathematics, specifically category theory, a functor is a mapping between categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) are associated to topological spaces, and maps between these algebraic objects are associated to continuous maps between spaces. Nowadays, functors are used throughout modern mathematics to relate various categories. Thus, functors are important in all areas within mathematics to which category theory is applied. The words ''category'' and ''functor'' were borrowed by mathematicians from the philosophers Aristotle and Rudolf Carnap, respectively. The latter used ''functor'' in a linguistic context; see function word. Definition Let ''C'' and ''D'' be categories. A functor ''F'' from ''C'' to ''D'' is a mapping that * associates each object X in ''C'' to an object F(X) in ''D'', * associates each morphism f \colon X \to Y in ''C'' to a morphism F(f) \colon F(X) \to F( ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Chain Complex
In mathematics, a chain complex is an algebraic structure that consists of a sequence of abelian groups (or modules) and a sequence of homomorphisms between consecutive groups such that the image of each homomorphism is contained in the kernel of the next. Associated to a chain complex is its homology, which is (loosely speaking) a measure of the failure of a chain complex to be exact. A cochain complex is similar to a chain complex, except that its homomorphisms are in the opposite direction. The homology of a cochain complex is called its cohomology. In algebraic topology, the singular chain complex of a topological space X is constructed using continuous maps from a simplex to X, and the homomorphisms of the chain complex capture how these maps restrict to the boundary of the simplex. The homology of this chain complex is called the singular homology of X, and is a commonly used invariant of a topological space. Chain complexes are studied in homological algebra, but a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cellular Homology
In mathematics, cellular homology in algebraic topology is a homology theory for the category of CW-complexes. It agrees with singular homology, and can provide an effective means of computing homology modules. Definition If X is a CW-complex with ''n''-skeleton X_ , the cellular-homology modules are defined as the homology groups ''Hi'' of the cellular chain complex : \cdots \to (X_,X_) \to (X_,X_) \to (X_,X_) \to \cdots, where X_ is taken to be the empty set. The group : (X_,X_) is free abelian, with generators that can be identified with the n -cells of X . Let e_^ be an n -cell of X , and let \chi_^: \partial e_^ \cong \mathbb^ \to X_ be the attaching map. Then consider the composition : \chi_^: \mathbb^ \, \stackrel \, \partial e_^ \, \stackrel \, X_ \, \stackrel \, X_ / \left( X_ \setminus e_^ \right) \, \stackr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Convex Hull
In geometry, the convex hull, convex envelope or convex closure of a shape is the smallest convex set that contains it. The convex hull may be defined either as the intersection of all convex sets containing a given subset of a Euclidean space, or equivalently as the set of all convex combinations of points in the subset. For a Bounded set, bounded subset of the plane, the convex hull may be visualized as the shape enclosed by a rubber band stretched around the subset. Convex hulls of open sets are open, and convex hulls of compact sets are compact. Every compact convex set is the convex hull of its extreme points. The convex hull operator is an example of a closure operator, and every antimatroid can be represented by applying this closure operator to finite sets of points. The algorithmic problems of finding the convex hull of a finite set of points in the plane or other low-dimensional Euclidean spaces, and its projective duality, dual problem of intersecting Half-space (geome ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dually007
{{disambig ...
Dually may refer to: * Dualla, County Tipperary, a village in Ireland *A pickup truck with dual wheels on the rear axle * DUALLy, s platform for architectural languages interoperability * Dual-processor See also * Dual (other) Dual or Duals may refer to: Paired/two things * Dual (mathematics), a notion of paired concepts that mirror one another ** Dual (category theory), a formalization of mathematical duality *** see more cases in :Duality theories * Dual number, a nu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dual Polyhedron
In geometry, every polyhedron is associated with a second dual structure, where the vertices of one correspond to the faces of the other, and the edges between pairs of vertices of one correspond to the edges between pairs of faces of the other. Such dual figures remain combinatorial or abstract polyhedra, but not all can also be constructed as geometric polyhedra. Starting with any given polyhedron, the dual of its dual is the original polyhedron. Duality preserves the symmetries of a polyhedron. Therefore, for many classes of polyhedra defined by their symmetries, the duals belong to a corresponding symmetry class. For example, the regular polyhedrathe (convex) Platonic solids and (star) Kepler–Poinsot polyhedraform dual pairs, where the regular tetrahedron is self-dual. The dual of an isogonal polyhedron (one in which any two vertices are equivalent under symmetries of the polyhedron) is an isohedral polyhedron (one in which any two faces are equivalent .., and vice ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cohomology With Compact Support
In mathematics, cohomology with compact support refers to certain cohomology theories, usually with some condition requiring that cocycles should have compact support. Singular cohomology with compact support Let X be a topological space. Then :\displaystyle H_c^\ast(X;R) := \varinjlim_ H^\ast(X,X\setminus K;R) By definition, this is the cohomology of the sub–chain complex C_c^\ast(X;R) consisting of all singular cochains \phi: C_i(X;R)\to R that have compact support in the sense that there exists some compact K\subseteq X such that \phi vanishes on all chains in X\setminus K. Functorial definition Let X be a topological space and p:X\to \star the map to the point. Using the direct image and direct image with compact support functors p_*,p_!:\text(X)\to \text(\star)=\text, one can define cohomology and cohomology with compact support of a sheaf of abelian groups \mathcal on X as :\displaystyle H^i(X,\mathcal)\ = \ R^ip_*\mathcal, :\displaystyle H^i_c(X,\mathcal)\ = \ R^ip_!\m ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Borel–Moore Homology
In topology, Borel−Moore homology or homology with closed support is a homology theory for locally compact spaces, introduced by Armand Borel and John Moore in 1960. For reasonable compact spaces, Borel−Moore homology coincides with the usual singular homology. For non-compact spaces, each theory has its own advantages. In particular, a closed oriented submanifold defines a class in Borel–Moore homology, but not in ordinary homology unless the submanifold is compact. Note: Borel equivariant cohomology is an invariant of spaces with an action of a group ''G''; it is defined as H^*_G(X) = H^*((EG \times X)/G). That is not related to the subject of this article. Definition There are several ways to define Borel−Moore homology. They all coincide for reasonable spaces such as manifolds and locally finite CW complexes. Definition via sheaf cohomology For any locally compact space ''X'', Borel–Moore homology with integral coefficients is defined as the cohomology of the dual ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |