HOME

TheInfoList



OR:

In mathematics, a
subset In mathematics, a Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they a ...
of a given
set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
is closed under an operation on the larger set if performing that operation on members of the subset always produces a member of that subset. For example, the
natural number In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive in ...
s are closed under addition, but not under subtraction: is not a natural number, although both 1 and 2 are. Similarly, a subset is said to be closed under a ''collection'' of operations if it is closed under each of the operations individually. The closure of a subset is the result of a
closure operator In mathematics, a closure operator on a Set (mathematics), set ''S'' is a Function (mathematics), function \operatorname: \mathcal(S)\rightarrow \mathcal(S) from the power set of ''S'' to itself that satisfies the following conditions for all sets ...
applied to the subset. The ''closure'' of a subset under some operations is the smallest superset that is closed under these operations. It is often called the ''span'' (for example
linear span In mathematics, the linear span (also called the linear hull or just span) of a set S of elements of a vector space V is the smallest linear subspace of V that contains S. It is the set of all finite linear combinations of the elements of , and ...
) or the ''generated set''.


Definitions

Let be a
set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
equipped with one or several methods for producing elements of from other elements of . Operations and (
partial Partial may refer to: Mathematics *Partial derivative, derivative with respect to one of several variables of a function, with the other variables held constant ** ∂, a symbol that can denote a partial derivative, sometimes pronounced "partial d ...
)
multivariate function In mathematics, a function from a set to a set assigns to each element of exactly one element of .; the words ''map'', ''mapping'', ''transformation'', ''correspondence'', and ''operator'' are sometimes used synonymously. The set is called ...
are examples of such methods. If is a
topological space In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a to ...
, the
limit of a sequence As the positive integer n becomes larger and larger, the value n\times \sin\left(\tfrac1\right) becomes arbitrarily close to 1. We say that "the limit of the sequence n \times \sin\left(\tfrac1\right) equals 1." In mathematics, the li ...
of elements of is an example, where there are an infinity of input elements and the result is not always defined. If is a field the
roots A root is the part of a plant, generally underground, that anchors the plant body, and absorbs and stores water and nutrients. Root or roots may also refer to: Art, entertainment, and media * ''The Root'' (magazine), an online magazine focusin ...
in of a
polynomial In mathematics, a polynomial is a Expression (mathematics), mathematical expression consisting of indeterminate (variable), indeterminates (also called variable (mathematics), variables) and coefficients, that involves only the operations of addit ...
with coefficients in is another example where the result may be not unique.
A subset of is said to be ''closed'' under these methods if an input of purely elements of always results in an element still in . Sometimes, one may also say that has the . The main property of closed sets, which results immediately from the definition, is that every
intersection In mathematics, the intersection of two or more objects is another object consisting of everything that is contained in all of the objects simultaneously. For example, in Euclidean geometry, when two lines in a plane are not parallel, their ...
of closed sets is a
closed set In geometry, topology, and related branches of mathematics, a closed set is a Set (mathematics), set whose complement (set theory), complement is an open set. In a topological space, a closed set can be defined as a set which contains all its lim ...
. It follows that for every subset of , there is a smallest closed subset of such that Y\subseteq X (it is the intersection of all closed subsets that contain ). Depending on the context, is called the ''closure'' of or the set generated or spanned by . The concepts of closed sets and closure are often extended to any property of subsets that are stable under intersection; that is, every intersection of subsets that have the property has also the property. For example, in \Complex^n, a ''
Zariski-closed In algebraic geometry and commutative algebra, the Zariski topology is a topology defined on geometric objects called varieties. It is very different from topologies that are commonly used in real or complex analysis; in particular, it is not ...
set'', also known as an
algebraic set Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. ...
, is the set of the common zeros of a family of polynomials, and the
Zariski closure In algebraic geometry and commutative algebra, the Zariski topology is a topology defined on geometric objects called varieties. It is very different from topologies that are commonly used in real or complex analysis; in particular, it is not ...
of a set of points is the smallest algebraic set that contains .


In algebraic structures

An
algebraic structure In mathematics, an algebraic structure or algebraic system consists of a nonempty set ''A'' (called the underlying set, carrier set or domain), a collection of operations on ''A'' (typically binary operations such as addition and multiplicatio ...
is a set equipped with operations that satisfy some
axioms An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy or f ...
. These axioms may be identities. Some axioms may contain
existential quantifier Existentialism is a family of philosophy, philosophical views and inquiry that explore the human individual's struggle to lead an Authenticity (philosophy), authentic life despite the apparent Absurdity#The Absurd, absurdity or incomprehensibili ...
s \exists; in this case it is worth to add some auxiliary operations in order that all axioms become identities or purely
universally quantified In mathematical logic, a universal quantification is a type of quantifier, a logical constant which is interpreted as "given any", "for all", "for every", or "given an arbitrary element". It expresses that a predicate can be satisfied by ev ...
formulas. See
Algebraic structure In mathematics, an algebraic structure or algebraic system consists of a nonempty set ''A'' (called the underlying set, carrier set or domain), a collection of operations on ''A'' (typically binary operations such as addition and multiplicatio ...
for details. A set with a single
binary operation In mathematics, a binary operation or dyadic operation is a rule for combining two elements (called operands) to produce another element. More formally, a binary operation is an operation of arity two. More specifically, a binary operation ...
that is closed is called a
magma Magma () is the molten or semi-molten natural material from which all igneous rocks are formed. Magma (sometimes colloquially but incorrectly referred to as ''lava'') is found beneath the surface of the Earth, and evidence of magmatism has also ...
. In this context, given an algebraic structure , a substructure of is a subset that is closed under all operations of , including the auxiliary operations that are needed for avoiding existential quantifiers. A substructure is an algebraic structure of the same type as . It follows that, in a specific example, when closeness is proved, there is no need to check the axioms for proving that a substructure is a structure of the same type. Given a subset of an algebraic structure , the closure of is the smallest substructure of that is closed under all operations of . In the context of algebraic structures, this closure is generally called the substructure ''generated'' or ''spanned'' by , and one says that is a
generating set In mathematics and physics, the term generator or generating set may refer to any of a number of related concepts. The underlying concept in each case is that of a smaller set of objects, together with a set of operations that can be applied to ...
of the substructure. For example, a
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic iden ...
is a set with an
associative operation In mathematics, the associative property is a property of some binary operations that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement for express ...
, often called ''multiplication'', with an
identity element In mathematics, an identity element or neutral element of a binary operation is an element that leaves unchanged every element when the operation is applied. For example, 0 is an identity element of the addition of real numbers. This concept is use ...
, such that every element has an
inverse element In mathematics, the concept of an inverse element generalises the concepts of opposite () and reciprocal () of numbers. Given an operation denoted here , and an identity element denoted , if , one says that is a left inverse of , and that ...
. Here, the auxiliary operations are the
nullary In logic Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the study of deductively valid inferences or logical truths. It examines how conclusions follow from premises based on the ...
operation that results in the identity element and the
unary operation In mathematics, a unary operation is an operation with only one operand, i.e. a single input. This is in contrast to ''binary operations'', which use two operands. An example is any function , where is a set; the function is a unary operation ...
of inversion. A subset of a group that is closed under multiplication and inversion is also closed under the nullary operation (that is, it contains the identity) if and only if it is non-empty. So, a non-empty subset of a group that is closed under multiplication and inversion is a group that is called a
subgroup In group theory, a branch of mathematics, a subset of a group G is a subgroup of G if the members of that subset form a group with respect to the group operation in G. Formally, given a group (mathematics), group under a binary operation  ...
. The subgroup generated by a single element, that is, the closure of this element, is called a
cyclic group In abstract algebra, a cyclic group or monogenous group is a Group (mathematics), group, denoted C_n (also frequently \Z_n or Z_n, not to be confused with the commutative ring of P-adic number, -adic numbers), that is Generating set of a group, ge ...
. In
linear algebra Linear algebra is the branch of mathematics concerning linear equations such as :a_1x_1+\cdots +a_nx_n=b, linear maps such as :(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n, and their representations in vector spaces and through matrix (mathemat ...
, the closure of a non-empty subset of a
vector space In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
(under vector-space operations, that is, addition and
scalar multiplication In mathematics, scalar multiplication is one of the basic operations defining a vector space in linear algebra (or more generally, a module in abstract algebra). In common geometrical contexts, scalar multiplication of a real Euclidean vector ...
) is the
linear span In mathematics, the linear span (also called the linear hull or just span) of a set S of elements of a vector space V is the smallest linear subspace of V that contains S. It is the set of all finite linear combinations of the elements of , and ...
of this subset. It is a vector space by the preceding general result, and it can be proved easily that is the set of
linear combination In mathematics, a linear combination or superposition is an Expression (mathematics), expression constructed from a Set (mathematics), set of terms by multiplying each term by a constant and adding the results (e.g. a linear combination of ''x'' a ...
s of elements of the subset. Similar examples can be given for almost every algebraic structures, with, sometimes some specific terminology. For example, in a
commutative ring In mathematics, a commutative ring is a Ring (mathematics), ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring prope ...
, the closure of a single element under ideal operations is called a
principal ideal In mathematics, specifically ring theory, a principal ideal is an ideal I in a ring R that is generated by a single element a of R through multiplication by every element of R. The term also has another, similar meaning in order theory, where ...
.


Binary relations

A
binary relation In mathematics, a binary relation associates some elements of one Set (mathematics), set called the ''domain'' with some elements of another set called the ''codomain''. Precisely, a binary relation over sets X and Y is a set of ordered pairs ...
R on a set A is a subset of A\times A, which is the set of all
ordered pair In mathematics, an ordered pair, denoted (''a'', ''b''), is a pair of objects in which their order is significant. The ordered pair (''a'', ''b'') is different from the ordered pair (''b'', ''a''), unless ''a'' = ''b''. In contrast, the '' unord ...
s on A. The
infix notation Infix notation is the notation commonly used in arithmetical and logical formulae and statements. It is characterized by the placement of operators between operands—"infixed operators"—such as the plus sign in . Usage Binary relations are ...
xRy is commonly used for (x,y)\in R. We can define different kinds of closures of R on A by the properties and operations of it. For examples:The description style for the closures in these examples is based on that found on the wiki page
Transitive closure In mathematics, the transitive closure of a homogeneous binary relation on a set (mathematics), set is the smallest Relation (mathematics), relation on that contains and is Transitive relation, transitive. For finite sets, "smallest" can be ...
, i.e. "the transitive closure of a homogeneous binary relation on a set is the smallest relation on that contains and is transitive."
; Reflexivity :As every intersection of reflexive relations is reflexive, we define the
reflexive closure In mathematics, the reflexive closure of a binary relation R on a set X is the smallest reflexive relation on X that contains R, i.e. the set R \cup \. For example, if X is a set of distinct numbers and x R y means "x is less than y", then the refl ...
of R on A as the smallest reflexive relation on A that contains R. ;
Symmetry Symmetry () in everyday life refers to a sense of harmonious and beautiful proportion and balance. In mathematics, the term has a more precise definition and is usually used to refer to an object that is Invariant (mathematics), invariant und ...
:As we can define a
unary operation In mathematics, a unary operation is an operation with only one operand, i.e. a single input. This is in contrast to ''binary operations'', which use two operands. An example is any function , where is a set; the function is a unary operation ...
on A\times A that maps (x,y) to (y,x), we define the
symmetric closure In mathematics, the symmetric closure of a binary relation R on a set X is the smallest symmetric relation A symmetric relation is a type of binary relation. Formally, a binary relation ''R'' over a set ''X'' is symmetric if: : \forall a, b \in ...
of R on A as the smallest relation on A that contains R and is closed under this unary operation. ; Transitivity :As we can define a partial binary operation on A\times A that maps (x,y) and (y,z) to (x,z), we define the
transitive closure In mathematics, the transitive closure of a homogeneous binary relation on a set (mathematics), set is the smallest Relation (mathematics), relation on that contains and is Transitive relation, transitive. For finite sets, "smallest" can be ...
of R on A as the smallest relation on A that contains R and is closed under this partial binary operation. A
preorder In mathematics, especially in order theory, a preorder or quasiorder is a binary relation that is reflexive relation, reflexive and Transitive relation, transitive. The name is meant to suggest that preorders are ''almost'' partial orders, ...
is a relation that is reflective and transitive. It follows that the reflexive transitive closure of a relation is the smallest preorder containing it. Similarly, the reflexive transitive symmetric closure or equivalence closure of a relation is the smallest
equivalence relation In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric, and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. A simpler example is equ ...
that contains it.


Other examples

* In
matroid In combinatorics, a matroid is a structure that abstracts and generalizes the notion of linear independence in vector spaces. There are many equivalent ways to define a matroid Axiomatic system, axiomatically, the most significant being in terms ...
theory, the closure of ''X'' is the largest superset of ''X'' that has the same rank as ''X''. * The
transitive closure In mathematics, the transitive closure of a homogeneous binary relation on a set (mathematics), set is the smallest Relation (mathematics), relation on that contains and is Transitive relation, transitive. For finite sets, "smallest" can be ...
of a
set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
. * The
algebraic closure In mathematics, particularly abstract algebra, an algebraic closure of a field ''K'' is an algebraic extension of ''K'' that is algebraically closed. It is one of many closures in mathematics. Using Zorn's lemmaMcCarthy (1991) p.21Kaplansky ...
of a field. * The
integral closure In commutative algebra, an element ''b'' of a commutative ring ''B'' is said to be integral over a subring ''A'' of ''B'' if ''b'' is a root of some monic polynomial over ''A''. If ''A'', ''B'' are fields, then the notions of "integral over" and ...
of an
integral domain In mathematics, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural setting for studying divisibilit ...
in a field that contains it. * The
radical of an ideal Radical (from Latin: ', root) may refer to: Politics and ideology Politics * Classical radicalism, the Radical Movement that began in late 18th century Britain and spread to continental Europe and Latin America in the 19th century * Radical politi ...
in a
commutative ring In mathematics, a commutative ring is a Ring (mathematics), ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring prope ...
. * In
geometry Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician w ...
, the
convex hull In geometry, the convex hull, convex envelope or convex closure of a shape is the smallest convex set that contains it. The convex hull may be defined either as the intersection of all convex sets containing a given subset of a Euclidean space, ...
of a set ''S'' of points is the smallest
convex set In geometry, a set of points is convex if it contains every line segment between two points in the set. For example, a solid cube (geometry), cube is a convex set, but anything that is hollow or has an indent, for example, a crescent shape, is n ...
of which ''S'' is a
subset In mathematics, a Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they a ...
. * In
formal language In logic, mathematics, computer science, and linguistics, a formal language is a set of strings whose symbols are taken from a set called "alphabet". The alphabet of a formal language consists of symbols that concatenate into strings (also c ...
s, the
Kleene closure In mathematical logic and theoretical computer science, the Kleene star (or Kleene operator or Kleene closure) is a unary operation on a set to generate a set of all finite-length strings that are composed of zero or more repetitions of members ...
of a language can be described as the set of strings that can be made by concatenating zero or more strings from that language. * In
group theory In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field ( ...
, the
conjugate closure In group theory, the normal closure of a subset S of a group G is the smallest normal subgroup of G containing S. Properties and description Formally, if G is a group and S is a subset of G, the normal closure \operatorname_G(S) of S is the ...
or normal closure of a set of
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic iden ...
elements is the smallest
normal subgroup In abstract algebra, a normal subgroup (also known as an invariant subgroup or self-conjugate subgroup) is a subgroup that is invariant under conjugation by members of the group of which it is a part. In other words, a subgroup N of the group ...
containing the set. * In
mathematical analysis Analysis is the branch of mathematics dealing with continuous functions, limit (mathematics), limits, and related theories, such as Derivative, differentiation, Integral, integration, measure (mathematics), measure, infinite sequences, series ( ...
and in
probability theory Probability theory or probability calculus is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expre ...
, the closure of a collection of subsets of ''X'' under countably many set operations is called the
σ-algebra In mathematical analysis and in probability theory, a σ-algebra ("sigma algebra") is part of the formalism for defining sets that can be measured. In calculus and analysis, for example, σ-algebras are used to define the concept of sets with a ...
generated by the collection.


Closure operator

In the preceding sections, closures are considered for subsets of a given set. The subsets of a set form a
partially ordered set In mathematics, especially order theory, a partial order on a Set (mathematics), set is an arrangement such that, for certain pairs of elements, one precedes the other. The word ''partial'' is used to indicate that not every pair of elements need ...
(poset) for
inclusion Inclusion or Include may refer to: Sociology * Social inclusion, action taken to support people of different backgrounds sharing life together. ** Inclusion (disability rights), promotion of people with disabilities sharing various aspects of lif ...
. ''Closure operators'' allow generalizing the concept of closure to any partially ordered set. Given a poset whose partial order is denoted with , a ''closure operator'' on is a function C:S\to S that is * ''increasing'' (x\le C(x) for all x\in S), *
idempotent Idempotence (, ) is the property of certain operations in mathematics and computer science whereby they can be applied multiple times without changing the result beyond the initial application. The concept of idempotence arises in a number of pl ...
(C(C(x))=C(x)), and *
monotonic In mathematics, a monotonic function (or monotone function) is a function between ordered sets that preserves or reverses the given order. This concept first arose in calculus, and was later generalized to the more abstract setting of ord ...
(x\le y \implies C(x)\le C(y)). Equivalently, a function from to is a closure operator if x \le C(y) \iff C(x) \le C(y) for all x,y\in S. An element of is ''closed'' if it is its own closure, that is, if x=C(x). By idempotency, an element is closed
if and only if In logic and related fields such as mathematics and philosophy, "if and only if" (often shortened as "iff") is paraphrased by the biconditional, a logical connective between statements. The biconditional is true in two cases, where either bo ...
it is the closure of some element of . An example is the
topological closure In topology, the closure of a subset of points in a topological space consists of all points in together with all limit points of . The closure of may equivalently be defined as the union of and its boundary, and also as the intersection ...
operator; in Kuratowski's characterization, axioms K2, K3, K4' correspond to the above defining properties. An example not operating on subsets is the
ceiling function In mathematics, the floor function is the function that takes as input a real number , and gives as output the greatest integer less than or equal to , denoted or . Similarly, the ceiling function maps to the least integer greater than or eq ...
, which maps every real number to the smallest integer that is not smaller than .


Closure operator vs. closed sets

A closure on the subsets of a given set may be defined either by a closure operator or by a set of closed sets that is stable under intersection and includes the given set. These two definitions are equivalent. Indeed, the defining properties of a closure operator implies that an intersection of closed sets is closed: if X = \bigcap X_i is an intersection of closed sets, then C(X) must contain and be contained in every X_i. This implies C(X) = X by definition of the intersection. Conversely, if closed sets are given and every intersection of closed sets is closed, then one can define a closure operator such that C(X) is the intersection of the closed sets containing . This equivalence remains true for partially ordered sets with the
greatest-lower-bound property In mathematics, the least-upper-bound property (sometimes called completeness, supremum property or l.u.b. property) is a fundamental property of the real numbers. More generally, a partially ordered set has the least-upper-bound property if ever ...
, if one replace "closed sets" by "closed elements" and "intersection" by "greatest lower bound".


Notes


References

* {{MathWorld , title=Algebraic Closure , urlname=AlgebraicClosure Set theory Closure operators Abstract algebra