Kleene Closure
In mathematical logic and theoretical computer science, the Kleene star (or Kleene operator or Kleene closure) is a unary operation on a set to generate a set of all finite-length strings that are composed of zero or more repetitions of members from . It was named after American mathematician Stephen Cole Kleene, who first introduced and widely used it to characterize automata for regular expressions. In mathematics, it is more commonly known as the free monoid construction. Definition Given a set V, define :V^=\ (the set consists only of the empty string), :V^=V, and define recursively the set :V^=\ for each i>0. V^i is called the i-th power of V, it is a shorthand for the concatenation of V by itself i times. That is, ''V^i'' can be understood to be the set of all strings that can be represented as the concatenation of i members from V. The definition of Kleene star on V is : V^*=\bigcup_V^i = V^0 \cup V^1 \cup V^2 \cup V^3 \cup V^4 \cup \cdots. Kleene plus In some fo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematical Logic
Mathematical logic is the study of Logic#Formal logic, formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory (also known as computability theory). Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics. Since its inception, mathematical logic has both contributed to and been motivated by the study of foundations of mathematics. This study began in the late 19th century with the development of axiomatic frameworks for geometry, arithmetic, and Mathematical analysis, analysis. In the early 20th century it was shaped by David Hilbert's Hilbert's program, program to prove the consistency of foundational theories. Results of Kurt Gödel, Gerhard Gentzen, and others provided partial resolution to th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Idempotent
Idempotence (, ) is the property of certain operations in mathematics and computer science whereby they can be applied multiple times without changing the result beyond the initial application. The concept of idempotence arises in a number of places in abstract algebra (in particular, in the theory of projectors and closure operators) and functional programming (in which it is connected to the property of referential transparency). The term was introduced by American mathematician Benjamin Peirce in 1870 in the context of elements of algebras that remain invariant when raised to a positive integer power, and literally means "(the quality of having) the same power", from + '' potence'' (same + power). Definition An element x of a set S equipped with a binary operator \cdot is said to be ''idempotent'' under \cdot if : . The ''binary operation'' \cdot is said to be ''idempotent'' if : . Examples * In the monoid (\mathbb, \times) of the natural numbers with multiplication, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Formal Languages
In logic, mathematics, computer science, and linguistics, a formal language is a set of string (computer science), strings whose symbols are taken from a set called "#Definition, alphabet". The alphabet of a formal language consists of symbols that concatenate into strings (also called "words"). Words that belong to a particular formal language are sometimes called Formal language#Definition, ''well-formed words''. A formal language is often defined by means of a formal grammar such as a regular grammar or context-free grammar. In computer science, formal languages are used, among others, as the basis for defining the grammar of programming languages and formalized versions of subsets of natural languages, in which the words of the language represent concepts that are associated with meanings or semantics. In computational complexity theory, decision problems are typically defined as formal languages, and complexity classes are defined as the sets of the formal languages that ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Addison-Wesley
Addison–Wesley is an American publisher of textbooks and computer literature. It is an imprint of Pearson plc, a global publishing and education company. In addition to publishing books, Addison–Wesley also distributes its technical titles through the O'Reilly Online Learning e-reference service. Addison–Wesley's majority of sales derive from the United States (55%) and Europe (22%). The Addison–Wesley Professional Imprint produces content including books, eBooks, and video for the professional IT worker including developers, programmers, managers, system administrators. Classic titles include '' The Art of Computer Programming'', '' The C++ Programming Language'', '' The Mythical Man-Month'', and '' Design Patterns''. History Lew Addison Cummings and Melbourne Wesley Cummings founded Addison–Wesley in 1942, with the first book published by Addison–Wesley being Massachusetts Institute of Technology professor Francis Weston Sears' ''Mechanics''. Its first comput ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Character (computing)
In computing and telecommunications, a character is the internal representation of a character (symbol) used within a computer or system. Examples of characters include letters, numerical digits, punctuation marks (such as "." or "-"), and whitespace. The concept also includes control characters, which do not correspond to visible symbols but rather to instructions to format or process the text. Examples of control characters include carriage return and tab as well as other instructions to printers or other devices that display or otherwise process text. Characters are typically combined into '' strings''. Historically, the term ''character'' was used to denote a specific number of contiguous bits. While a character is most commonly assumed to refer to 8 bits (one byte) today, other options like the 6-bit character code were once popular, and the 5-bit Baudot code has been used in the past as well. The term has even been applied to 4 bits with only 16 possible valu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Glob (programming)
glob() () is a libc function for ''globbing'', which is the archetypal use of pattern matching against the names in a filesystem directory such that a name pattern is expanded into a list of names matching that pattern. Although ''globbing'' may now refer to glob()-style pattern matching of any string, not just expansion into a list of filesystem names, the original meaning of the term is still widespread. The glob() function and the underlying gmatch() function originated at Bell Labs in the early 1970s alongside the original AT&T UNIX itself and had a formative influence on the syntax of UNIX command line utilities and therefore also on the present-day reimplementations thereof. In their original form, glob() and gmatch() derived from code used in Bell Labs in-house utilities that developed alongside the original Unix in the early 1970s. Among those utilities were also two command line tools called glob and find; each could be used to pass a list of matching filenames to ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Wildcard Character
In software, a wildcard character is a kind of placeholder represented by a single character (computing), character, such as an asterisk (), which can be interpreted as a number of literal characters or an empty string. It is often used in file searches so the full name need not be typed. Telecommunication In telecommunications, a wildcard is a character that may be substituted for any of a defined subset of all possible characters. * In high-frequency (HF) radio automatic link establishment, the wildcard character may be substituted for any one of the 36 upper-case alphanumeric characters. * Whether the wildcard character represents a single character or a String (computer science), string of characters must be specified. Computing In computer (software) technology, a wildcard is a symbol used to replace or represent zero or more characters. Matching wildcards, Algorithms for matching wildcards have been developed in a number of recursion, recursive and non-recursive varietie ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Complete Star Semiring
In abstract algebra, a semiring is an algebraic structure. Semirings are a generalization of rings, dropping the requirement that each element must have an additive inverse. At the same time, semirings are a generalization of bounded distributive lattices. The smallest semiring that is not a ring is the two-element Boolean algebra, for instance with logical disjunction \lor as addition. A motivating example that is neither a ring nor a lattice is the set of natural numbers \N (including zero) under ordinary addition and multiplication. Semirings are abundant because a suitable multiplication operation arises as the function composition of endomorphisms over any commutative monoid. Terminology Some authors define semirings without the requirement for there to be a 0 or 1. This makes the analogy between ring and on the one hand and and on the other hand work more smoothly. These authors often use rig for the concept defined here. This originated as a joke, suggesting th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebraic Structure
In mathematics, an algebraic structure or algebraic system consists of a nonempty set ''A'' (called the underlying set, carrier set or domain), a collection of operations on ''A'' (typically binary operations such as addition and multiplication), and a finite set of identities (known as ''axioms'') that these operations must satisfy. An algebraic structure may be based on other algebraic structures with operations and axioms involving several structures. For instance, a vector space involves a second structure called a field, and an operation called ''scalar multiplication'' between elements of the field (called '' scalars''), and elements of the vector space (called '' vectors''). Abstract algebra is the name that is commonly given to the study of algebraic structures. The general theory of algebraic structures has been formalized in universal algebra. Category theory is another formalization that includes also other mathematical structures and functions between structu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Monoid
In abstract algebra, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being . Monoids are semigroups with identity. Such algebraic structures occur in several branches of mathematics. The functions from a set into itself form a monoid with respect to function composition. More generally, in category theory, the morphisms of an object to itself form a monoid, and, conversely, a monoid may be viewed as a category with a single object. In computer science and computer programming, the set of strings built from a given set of characters is a free monoid. Transition monoids and syntactic monoids are used in describing finite-state machines. Trace monoids and history monoids provide a foundation for process calculi and concurrent computing. In theoretical computer science, the study of monoids is fundamental for automata theory (Krohn–Rhodes ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
String (computer Science)
In computer programming, a string is traditionally a sequence of character (computing), characters, either as a literal (computer programming), literal constant or as some kind of Variable (computer science), variable. The latter may allow its elements to be Immutable object, mutated and the length changed, or it may be fixed (after creation). A string is often implemented as an array data structure of bytes (or word (computer architecture), words) that stores a sequence of elements, typically characters, using some character encoding. More general, ''string'' may also denote a sequence (or List (abstract data type), list) of data other than just characters. Depending on the programming language and precise data type used, a variable (programming), variable declared to be a string may either cause storage in memory to be statically allocated for a predetermined maximum length or employ dynamic allocation to allow it to hold a variable number of elements. When a string appears lit ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Empty Set
In mathematics, the empty set or void set is the unique Set (mathematics), set having no Element (mathematics), elements; its size or cardinality (count of elements in a set) is 0, zero. Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set, while in other theories, its existence can be deduced. Many possible properties of sets are vacuously true for the empty set. Any set other than the empty set is called ''non-empty''. In some textbooks and popularizations, the empty set is referred to as the "null set". However, null set is a distinct notion within the context of measure theory, in which it describes a set of measure zero (which is not necessarily empty). Notation Common notations for the empty set include "", "\emptyset", and "∅". The latter two symbols were introduced by the Bourbaki group (specifically André Weil) in 1939, inspired by the letter Ø () in the Danish orthography, Danish and Norwegian orthography, Norwegian a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |