Classical Thermodynamics
   HOME

TheInfoList



OR:

Thermodynamics is a branch of
physics Physics is the scientific study of matter, its Elementary particle, fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge whi ...
that deals with
heat In thermodynamics, heat is energy in transfer between a thermodynamic system and its surroundings by such mechanisms as thermal conduction, electromagnetic radiation, and friction, which are microscopic in nature, involving sub-atomic, ato ...
, work, and
temperature Temperature is a physical quantity that quantitatively expresses the attribute of hotness or coldness. Temperature is measurement, measured with a thermometer. It reflects the average kinetic energy of the vibrating and colliding atoms making ...
, and their relation to
energy Energy () is the physical quantity, quantitative physical property, property that is transferred to a physical body, body or to a physical system, recognizable in the performance of Work (thermodynamics), work and in the form of heat and l ...
,
entropy Entropy is a scientific concept, most commonly associated with states of disorder, randomness, or uncertainty. The term and the concept are used in diverse fields, from classical thermodynamics, where it was first recognized, to the micros ...
, and the physical properties of
matter In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic pa ...
and
radiation In physics, radiation is the emission or transmission of energy in the form of waves or particles through space or a material medium. This includes: * ''electromagnetic radiation'' consisting of photons, such as radio waves, microwaves, infr ...
. The behavior of these quantities is governed by the four laws of thermodynamics, which convey a quantitative description using measurable macroscopic
physical quantities A physical quantity (or simply quantity) is a property of a material or system that can be quantified by measurement. A physical quantity can be expressed as a ''value'', which is the algebraic multiplication of a '' numerical value'' and a '' ...
but may be explained in terms of microscopic constituents by
statistical mechanics In physics, statistical mechanics is a mathematical framework that applies statistical methods and probability theory to large assemblies of microscopic entities. Sometimes called statistical physics or statistical thermodynamics, its applicati ...
. Thermodynamics applies to various topics in
science Science is a systematic discipline that builds and organises knowledge in the form of testable hypotheses and predictions about the universe. Modern science is typically divided into twoor threemajor branches: the natural sciences, which stu ...
and
engineering Engineering is the practice of using natural science, mathematics, and the engineering design process to Problem solving#Engineering, solve problems within technology, increase efficiency and productivity, and improve Systems engineering, s ...
, especially
physical chemistry Physical chemistry is the study of macroscopic and microscopic phenomena in chemical systems in terms of the principles, practices, and concepts of physics such as motion, energy, force, time, thermodynamics, quantum chemistry, statistical mech ...
,
biochemistry Biochemistry, or biological chemistry, is the study of chemical processes within and relating to living organisms. A sub-discipline of both chemistry and biology, biochemistry may be divided into three fields: structural biology, enzymology, a ...
,
chemical engineering Chemical engineering is an engineering field which deals with the study of the operation and design of chemical plants as well as methods of improving production. Chemical engineers develop economical commercial processes to convert raw materials ...
, and
mechanical engineering Mechanical engineering is the study of physical machines and mechanism (engineering), mechanisms that may involve force and movement. It is an engineering branch that combines engineering physics and engineering mathematics, mathematics principl ...
, as well as other complex fields such as
meteorology Meteorology is the scientific study of the Earth's atmosphere and short-term atmospheric phenomena (i.e. weather), with a focus on weather forecasting. It has applications in the military, aviation, energy production, transport, agricultur ...
. Historically, thermodynamics developed out of a desire to increase the
efficiency Efficiency is the often measurable ability to avoid making mistakes or wasting materials, energy, efforts, money, and time while performing a task. In a more general sense, it is the ability to do things well, successfully, and without waste. ...
of early
steam engine A steam engine is a heat engine that performs Work (physics), mechanical work using steam as its working fluid. The steam engine uses the force produced by steam pressure to push a piston back and forth inside a Cylinder (locomotive), cyl ...
s, particularly through the work of French physicist Sadi Carnot (1824) who believed that engine efficiency was the key that could help France win the
Napoleonic Wars {{Infobox military conflict , conflict = Napoleonic Wars , partof = the French Revolutionary and Napoleonic Wars , image = Napoleonic Wars (revision).jpg , caption = Left to right, top to bottom:Battl ...
. Scots-Irish physicist
Lord Kelvin William Thomson, 1st Baron Kelvin (26 June 182417 December 1907), was a British mathematician, Mathematical physics, mathematical physicist and engineer. Born in Belfast, he was the Professor of Natural Philosophy (Glasgow), professor of Natur ...
was the first to formulate a concise definition of thermodynamics in 1854 which stated, "Thermo-dynamics is the subject of the relation of heat to forces acting between contiguous parts of bodies, and the relation of heat to electrical agency." German physicist and mathematician Rudolf Clausius restated Carnot's principle known as the Carnot cycle and gave the
theory of heat The history of thermodynamics is a fundamental strand in the history of physics, the history of chemistry, and the history of science in general. Due to the relevance of thermodynamics in much of science and technology, its history is finely wove ...
a truer and sounder basis. His most important paper, "On the Moving Force of Heat", Contains English translations of many of his other works. published in 1850, first stated the
second law of thermodynamics The second law of thermodynamics is a physical law based on Universal (metaphysics), universal empirical observation concerning heat and Energy transformation, energy interconversions. A simple statement of the law is that heat always flows spont ...
. In 1865 he introduced the concept of entropy. In 1870 he introduced the virial theorem, which applied to heat. The initial application of thermodynamics to
mechanical heat engine A heat engine is a system that transfers thermal energy to do work (physics), mechanical or voltage#Definition, electrical work. While originally conceived in the context of mechanical energy, the concept of the heat engine has been applied to ...
s was quickly extended to the study of chemical compounds and chemical reactions.
Chemical thermodynamics Chemical thermodynamics is the study of the interrelation of heat and work with chemical reactions or with physical changes of state within the confines of the laws of thermodynamics. Chemical thermodynamics involves not only laboratory measure ...
studies the nature of the role of entropy in the process of
chemical reaction A chemical reaction is a process that leads to the chemistry, chemical transformation of one set of chemical substances to another. When chemical reactions occur, the atoms are rearranged and the reaction is accompanied by an Gibbs free energy, ...
s and has provided the bulk of expansion and knowledge of the field. Other formulations of thermodynamics emerged. Statistical thermodynamics, or statistical mechanics, concerns itself with
statistical Statistics (from German language, German: ', "description of a State (polity), state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a s ...
predictions of the collective motion of particles from their microscopic behavior. In 1909,
Constantin Carathéodory Constantin Carathéodory (; 13 September 1873 – 2 February 1950) was a Greeks, Greek mathematician who spent most of his professional career in Germany. He made significant contributions to real and complex analysis, the calculus of variations, ...
presented a purely mathematical approach in an axiomatic formulation, a description often referred to as ''geometrical thermodynamics''.


Introduction

A description of any thermodynamic system employs the four laws of thermodynamics that form an axiomatic basis. The first law specifies that energy can be transferred between physical systems as
heat In thermodynamics, heat is energy in transfer between a thermodynamic system and its surroundings by such mechanisms as thermal conduction, electromagnetic radiation, and friction, which are microscopic in nature, involving sub-atomic, ato ...
, as work, and with transfer of matter. The second law defines the existence of a quantity called
entropy Entropy is a scientific concept, most commonly associated with states of disorder, randomness, or uncertainty. The term and the concept are used in diverse fields, from classical thermodynamics, where it was first recognized, to the micros ...
, that describes the direction, thermodynamically, that a system can evolve and quantifies the state of order of a system and that can be used to quantify the useful work that can be extracted from the system. In thermodynamics, interactions between large ensembles of objects are studied and categorized. Central to this are the concepts of the thermodynamic ''
system A system is a group of interacting or interrelated elements that act according to a set of rules to form a unified whole. A system, surrounded and influenced by its open system (systems theory), environment, is described by its boundaries, str ...
'' and its ''
surroundings Surroundings, or environs is an area around a given physical or geographical point or place. The exact definition depends on the field. Surroundings can also be used in geography (when it is more precisely known as vicinity, or vicinage) and ...
''. A system is composed of particles, whose average motions define its properties, and those properties are in turn related to one another through equations of state. Properties can be combined to express
internal energy The internal energy of a thermodynamic system is the energy of the system as a state function, measured as the quantity of energy necessary to bring the system from its standard internal state to its present internal state of interest, accoun ...
and
thermodynamic potential Thermodynamics is a branch of physics that deals with heat, Work (thermodynamics), work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation. The behavior of these quantities is governed b ...
s, which are useful for determining conditions for equilibrium and spontaneous processes. With these tools, thermodynamics can be used to describe how systems respond to changes in their environment. This can be applied to a wide variety of topics in
science Science is a systematic discipline that builds and organises knowledge in the form of testable hypotheses and predictions about the universe. Modern science is typically divided into twoor threemajor branches: the natural sciences, which stu ...
and
engineering Engineering is the practice of using natural science, mathematics, and the engineering design process to Problem solving#Engineering, solve problems within technology, increase efficiency and productivity, and improve Systems engineering, s ...
, such as
engine An engine or motor is a machine designed to convert one or more forms of energy into mechanical energy. Available energy sources include potential energy (e.g. energy of the Earth's gravitational field as exploited in hydroelectric power ge ...
s,
phase transition In physics, chemistry, and other related fields like biology, a phase transition (or phase change) is the physical process of transition between one state of a medium and another. Commonly the term is used to refer to changes among the basic Sta ...
s,
chemical reaction A chemical reaction is a process that leads to the chemistry, chemical transformation of one set of chemical substances to another. When chemical reactions occur, the atoms are rearranged and the reaction is accompanied by an Gibbs free energy, ...
s,
transport phenomena In engineering, physics, and chemistry, the study of transport phenomena concerns the exchange of mass, energy, charge, momentum and angular momentum between observed and studied systems. While it draws from fields as diverse as continuum mec ...
, and even
black hole A black hole is a massive, compact astronomical object so dense that its gravity prevents anything from escaping, even light. Albert Einstein's theory of general relativity predicts that a sufficiently compact mass will form a black hole. Th ...
s. The results of thermodynamics are essential for other fields of
physics Physics is the scientific study of matter, its Elementary particle, fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge whi ...
and for
chemistry Chemistry is the scientific study of the properties and behavior of matter. It is a physical science within the natural sciences that studies the chemical elements that make up matter and chemical compound, compounds made of atoms, molecules a ...
,
chemical engineering Chemical engineering is an engineering field which deals with the study of the operation and design of chemical plants as well as methods of improving production. Chemical engineers develop economical commercial processes to convert raw materials ...
, corrosion engineering,
aerospace engineering Aerospace engineering is the primary field of engineering concerned with the development of aircraft and spacecraft. It has two major and overlapping branches: aeronautical engineering and astronautical engineering. Avionics engineering is s ...
,
mechanical engineering Mechanical engineering is the study of physical machines and mechanism (engineering), mechanisms that may involve force and movement. It is an engineering branch that combines engineering physics and engineering mathematics, mathematics principl ...
,
cell biology Cell biology (also cellular biology or cytology) is a branch of biology that studies the structure, function, and behavior of cells. All living organisms are made of cells. A cell is the basic unit of life that is responsible for the living an ...
,
biomedical engineering Biomedical engineering (BME) or medical engineering is the application of engineering principles and design concepts to medicine and biology for healthcare applications (e.g., diagnostic or therapeutic purposes). BME also integrates the logica ...
,
materials science Materials science is an interdisciplinary field of researching and discovering materials. Materials engineering is an engineering field of finding uses for materials in other fields and industries. The intellectual origins of materials sci ...
, and
economics Economics () is a behavioral science that studies the Production (economics), production, distribution (economics), distribution, and Consumption (economics), consumption of goods and services. Economics focuses on the behaviour and interac ...
, to name a few. This article is focused mainly on classical thermodynamics which primarily studies systems in thermodynamic equilibrium. Non-equilibrium thermodynamics is often treated as an extension of the classical treatment, but statistical mechanics has brought many advances to that field.


History

The history of thermodynamics as a scientific discipline generally begins with
Otto von Guericke Otto von Guericke ( , , ; spelled Gericke until 1666; – ) was a German scientist, inventor, mathematician and physicist. His pioneering scientific work, the development of experimental methods and repeatable demonstrations on the physics of ...
who, in 1650, built and designed the world's first vacuum pump and demonstrated a
vacuum A vacuum (: vacuums or vacua) is space devoid of matter. The word is derived from the Latin adjective (neuter ) meaning "vacant" or "void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressur ...
using his Magdeburg hemispheres. Guericke was driven to make a vacuum in order to disprove
Aristotle Aristotle (; 384–322 BC) was an Ancient Greek philosophy, Ancient Greek philosopher and polymath. His writings cover a broad range of subjects spanning the natural sciences, philosophy, linguistics, economics, politics, psychology, a ...
's long-held supposition that 'nature abhors a vacuum'. Shortly after Guericke, the Anglo-Irish physicist and chemist Robert Boyle had learned of Guericke's designs and, in 1656, in coordination with English scientist
Robert Hooke Robert Hooke (; 18 July 16353 March 1703) was an English polymath who was active as a physicist ("natural philosopher"), astronomer, geologist, meteorologist, and architect. He is credited as one of the first scientists to investigate living ...
, built an air pump. Using this pump, Boyle and Hooke noticed a correlation between
pressure Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country and eve ...
,
temperature Temperature is a physical quantity that quantitatively expresses the attribute of hotness or coldness. Temperature is measurement, measured with a thermometer. It reflects the average kinetic energy of the vibrating and colliding atoms making ...
, and
volume Volume is a measure of regions in three-dimensional space. It is often quantified numerically using SI derived units (such as the cubic metre and litre) or by various imperial or US customary units (such as the gallon, quart, cubic inch) ...
. In time,
Boyle's Law Boyle's law, also referred to as the Boyle–Mariotte law or Mariotte's law (especially in France), is an empirical gas laws, gas law that describes the relationship between pressure and volume of a confined gas. Boyle's law has been stated as: ...
was formulated, which states that pressure and volume are
inversely proportional In mathematics, two sequences of numbers, often experimental data, are proportional or directly proportional if their corresponding elements have a constant ratio. The ratio is called ''coefficient of proportionality'' (or ''proportionality ...
. Then, in 1679, based on these concepts, an associate of Boyle's named
Denis Papin Denis Papin FRS (; 22 August 1647 – 26 August 1713) was a French physicist, mathematician and inventor, best known for his pioneering invention of the steam digester, the forerunner of the pressure cooker, the steam engine, the centrifug ...
built a steam digester, which was a closed vessel with a tightly fitting lid that confined steam until a high pressure was generated. Later designs implemented a steam release valve that kept the machine from exploding. By watching the valve rhythmically move up and down, Papin conceived of the idea of a
piston A piston is a component of reciprocating engines, reciprocating pumps, gas compressors, hydraulic cylinders and pneumatic cylinders, among other similar mechanisms. It is the moving component that is contained by a cylinder (engine), cylinder a ...
and a cylinder engine. He did not, however, follow through with his design. Nevertheless, in 1697, based on Papin's designs, engineer Thomas Savery built the first engine, followed by Thomas Newcomen in 1712. Although these early engines were crude and inefficient, they attracted the attention of the leading scientists of the time. The fundamental concepts of
heat capacity Heat capacity or thermal capacity is a physical property of matter, defined as the amount of heat to be supplied to an object to produce a unit change in its temperature. The SI unit of heat capacity is joule per kelvin (J/K). Heat capacity is a ...
and
latent heat Latent heat (also known as latent energy or heat of transformation) is energy released or absorbed, by a body or a thermodynamic system, during a constant-temperature process—usually a first-order phase transition, like melting or condensation. ...
, which were necessary for the development of thermodynamics, were developed by Professor Joseph Black at the University of Glasgow, where
James Watt James Watt (; 30 January 1736 (19 January 1736 OS) – 25 August 1819) was a Scottish inventor, mechanical engineer, and chemist who improved on Thomas Newcomen's 1712 Newcomen steam engine with his Watt steam engine in 1776, which was f ...
was employed as an instrument maker. Black and Watt performed experiments together, but it was Watt who conceived the idea of the external condenser which resulted in a large increase in
steam engine A steam engine is a heat engine that performs Work (physics), mechanical work using steam as its working fluid. The steam engine uses the force produced by steam pressure to push a piston back and forth inside a Cylinder (locomotive), cyl ...
efficiency. Drawing on all the previous work led Sadi Carnot, the "father of thermodynamics", to publish '' Reflections on the Motive Power of Fire'' (1824), a discourse on heat, power, energy and engine efficiency. The book outlined the basic energetic relations between the Carnot engine, the Carnot cycle, and motive power. It marked the start of thermodynamics as a modern science. The first thermodynamic textbook was written in 1859 by William Rankine, originally trained as a physicist and a civil and mechanical engineering professor at the
University of Glasgow The University of Glasgow (abbreviated as ''Glas.'' in Post-nominal letters, post-nominals; ) is a Public university, public research university in Glasgow, Scotland. Founded by papal bull in , it is the List of oldest universities in continuous ...
. The first and second laws of thermodynamics emerged simultaneously in the 1850s, primarily out of the works of William Rankine, Rudolf Clausius, and William Thomson (Lord Kelvin). The foundations of statistical thermodynamics were set out by physicists such as
James Clerk Maxwell James Clerk Maxwell (13 June 1831 – 5 November 1879) was a Scottish physicist and mathematician who was responsible for the classical theory of electromagnetic radiation, which was the first theory to describe electricity, magnetism an ...
,
Ludwig Boltzmann Ludwig Eduard Boltzmann ( ; ; 20 February 1844 – 5 September 1906) was an Austrian mathematician and Theoretical physics, theoretical physicist. His greatest achievements were the development of statistical mechanics and the statistical ex ...
,
Max Planck Max Karl Ernst Ludwig Planck (; ; 23 April 1858 – 4 October 1947) was a German Theoretical physics, theoretical physicist whose discovery of energy quantum, quanta won him the Nobel Prize in Physics in 1918. Planck made many substantial con ...
, Rudolf Clausius and J. Willard Gibbs. Clausius, who first stated the basic ideas of the second law in his paper "On the Moving Force of Heat", published in 1850, and is called "one of the founding fathers of thermodynamics", introduced the concept of
entropy Entropy is a scientific concept, most commonly associated with states of disorder, randomness, or uncertainty. The term and the concept are used in diverse fields, from classical thermodynamics, where it was first recognized, to the micros ...
in 1865. During the years 1873–76 the American mathematical physicist Josiah Willard Gibbs published a series of three papers, the most famous being '' On the Equilibrium of Heterogeneous Substances'', in which he showed how
thermodynamic processes Classical thermodynamics considers three main kinds of thermodynamic processes: (1) changes in a system, (2) cycles in a system, and (3) flow processes. (1) A Thermodynamic process is a process in which the thermodynamic state of a system is c ...
, including
chemical reaction A chemical reaction is a process that leads to the chemistry, chemical transformation of one set of chemical substances to another. When chemical reactions occur, the atoms are rearranged and the reaction is accompanied by an Gibbs free energy, ...
s, could be graphically analyzed, by studying the
energy Energy () is the physical quantity, quantitative physical property, property that is transferred to a physical body, body or to a physical system, recognizable in the performance of Work (thermodynamics), work and in the form of heat and l ...
,
entropy Entropy is a scientific concept, most commonly associated with states of disorder, randomness, or uncertainty. The term and the concept are used in diverse fields, from classical thermodynamics, where it was first recognized, to the micros ...
,
volume Volume is a measure of regions in three-dimensional space. It is often quantified numerically using SI derived units (such as the cubic metre and litre) or by various imperial or US customary units (such as the gallon, quart, cubic inch) ...
,
temperature Temperature is a physical quantity that quantitatively expresses the attribute of hotness or coldness. Temperature is measurement, measured with a thermometer. It reflects the average kinetic energy of the vibrating and colliding atoms making ...
and
pressure Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country and eve ...
of the
thermodynamic system A thermodynamic system is a body of matter and/or radiation separate from its surroundings that can be studied using the laws of thermodynamics. Thermodynamic systems can be passive and active according to internal processes. According to inter ...
in such a manner, one can determine if a process would occur spontaneously. Also
Pierre Duhem Pierre Maurice Marie Duhem (; 9 June 1861 – 14 September 1916) was a French theoretical physicist who made significant contributions to thermodynamics, hydrodynamics, and the theory of Elasticity (physics), elasticity. Duhem was also a prolif ...
in the 19th century wrote about chemical thermodynamics.Duhem, P.M.M. (1886). ''Le Potential Thermodynamique et ses Applications'', Hermann, Paris. During the early 20th century, chemists such as Gilbert N. Lewis, Merle Randall, and E. A. GuggenheimGuggenheim, E.A. (1933). ''Modern Thermodynamics by the Methods of J.W. Gibbs'', Methuen, London.Guggenheim, E.A. (1949/1967). ''Thermodynamics. An Advanced Treatment for Chemists and Physicists'', 1st edition 1949, 5th edition 1967, North-Holland, Amsterdam. applied the mathematical methods of Gibbs to the analysis of chemical processes.


Etymology

''Thermodynamics'' has an intricate etymology. By a surface-level analysis, the word consists of two parts that can be traced back to Ancient Greek. Firstly, ("of heat"; used in words such as ''
thermometer A thermometer is a device that measures temperature (the hotness or coldness of an object) or temperature gradient (the rates of change of temperature in space). A thermometer has two important elements: (1) a temperature sensor (e.g. the bulb ...
'') can be traced back to the root θέρμη ''therme'', meaning "heat". Secondly, the word ("science of force r power) can be traced back to the root δύναμις ''dynamis'', meaning "power". In 1849, the adjective ''thermo-dynamic'' is used by William Thomson.Kelvin, William T. (1849) "An Account of Carnot's Theory of the Motive Power of Heat – with Numerical Results Deduced from Regnault's Experiments on Steam." ''Transactions of the Edinburg Royal Society, XVI. January 2.
Scanned Copy
In 1854, the noun ''thermo-dynamics'' is used by Thomson and William Rankine to represent the science of generalized heat engines. Pierre Perrot claims that the term ''thermodynamics'' was coined by James Joule in 1858 to designate the science of relations between heat and power, however, Joule never used that term, but used instead the term ''perfect thermo-dynamic engine'' in reference to Thomson's 1849 phraseology.


Branches of thermodynamics

The study of thermodynamical systems has developed into several related branches, each using a different fundamental model as a theoretical or experimental basis, or applying the principles to varying types of systems.


Classical thermodynamics

Classical thermodynamics is the description of the states of thermodynamic systems at near-equilibrium, that uses macroscopic, measurable properties. It is used to model exchanges of energy, work and heat based on the laws of thermodynamics. The qualifier ''classical'' reflects the fact that it represents the first level of understanding of the subject as it developed in the 19th century and describes the changes of a system in terms of macroscopic empirical (large scale, and measurable) parameters. A microscopic interpretation of these concepts was later provided by the development of ''statistical mechanics''.


Statistical mechanics

Statistical mechanics In physics, statistical mechanics is a mathematical framework that applies statistical methods and probability theory to large assemblies of microscopic entities. Sometimes called statistical physics or statistical thermodynamics, its applicati ...
, also known as statistical thermodynamics, emerged with the development of atomic and molecular theories in the late 19th century and early 20th century, and supplemented classical thermodynamics with an interpretation of the microscopic interactions between individual particles or quantum-mechanical states. This field relates the microscopic properties of individual atoms and molecules to the macroscopic, bulk properties of materials that can be observed on the human scale, thereby explaining classical thermodynamics as a natural result of statistics, classical mechanics, and quantum theory at the microscopic level.


Chemical thermodynamics

Chemical thermodynamics Chemical thermodynamics is the study of the interrelation of heat and work with chemical reactions or with physical changes of state within the confines of the laws of thermodynamics. Chemical thermodynamics involves not only laboratory measure ...
is the study of the interrelation of
energy Energy () is the physical quantity, quantitative physical property, property that is transferred to a physical body, body or to a physical system, recognizable in the performance of Work (thermodynamics), work and in the form of heat and l ...
with chemical reactions or with a physical change of
state State most commonly refers to: * State (polity), a centralized political organization that regulates law and society within a territory **Sovereign state, a sovereign polity in international law, commonly referred to as a country **Nation state, a ...
within the confines of the laws of thermodynamics. The primary objective of chemical thermodynamics is determining the spontaneity of a given transformation.


Equilibrium thermodynamics

Equilibrium thermodynamics is the study of transfers of matter and energy in systems or bodies that, by agencies in their surroundings, can be driven from one state of thermodynamic equilibrium to another. The term 'thermodynamic equilibrium' indicates a state of balance, in which all macroscopic flows are zero; in the case of the simplest systems or bodies, their intensive properties are homogeneous, and their pressures are perpendicular to their boundaries. In an equilibrium state there are no unbalanced potentials, or driving forces, between macroscopically distinct parts of the system. A central aim in equilibrium thermodynamics is: given a system in a well-defined initial equilibrium state, and given its surroundings, and given its constitutive walls, to calculate what will be the final equilibrium state of the system after a specified thermodynamic operation has changed its walls or surroundings.


Non-equilibrium thermodynamics

Non-equilibrium thermodynamics is a branch of thermodynamics that deals with systems that are not in thermodynamic equilibrium. Most systems found in nature are not in thermodynamic equilibrium because they are not in stationary states, and are continuously and discontinuously subject to flux of matter and energy to and from other systems. The thermodynamic study of non-equilibrium systems requires more general concepts than are dealt with by equilibrium thermodynamics. Many natural systems still today remain beyond the scope of currently known macroscopic thermodynamic methods.


Laws of thermodynamics

Thermodynamics is principally based on a set of four laws which are universally valid when applied to systems that fall within the constraints implied by each. In the various theoretical descriptions of thermodynamics these laws may be expressed in seemingly differing forms, but the most prominent formulations are the following.


Zeroth law

The zeroth law of thermodynamics states: ''If two systems are each in thermal equilibrium with a third, they are also in thermal equilibrium with each other.'' This statement implies that thermal equilibrium is an
equivalence relation In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric, and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. A simpler example is equ ...
on the set of
thermodynamic system A thermodynamic system is a body of matter and/or radiation separate from its surroundings that can be studied using the laws of thermodynamics. Thermodynamic systems can be passive and active according to internal processes. According to inter ...
s under consideration. Systems are said to be in equilibrium if the small, random exchanges between them (e.g. Brownian motion) do not lead to a net change in energy. This law is tacitly assumed in every measurement of temperature. Thus, if one seeks to decide whether two bodies are at the same
temperature Temperature is a physical quantity that quantitatively expresses the attribute of hotness or coldness. Temperature is measurement, measured with a thermometer. It reflects the average kinetic energy of the vibrating and colliding atoms making ...
, it is not necessary to bring them into contact and measure any changes of their observable properties in time. The law provides an empirical definition of temperature, and justification for the construction of practical thermometers. The zeroth law was not initially recognized as a separate law of thermodynamics, as its basis in thermodynamical equilibrium was implied in the other laws. The first, second, and third laws had been explicitly stated already, and found common acceptance in the physics community before the importance of the zeroth law for the definition of temperature was realized. As it was impractical to renumber the other laws, it was named the ''zeroth law''.


First law

The
first law of thermodynamics The first law of thermodynamics is a formulation of the law of conservation of energy in the context of thermodynamic processes. For a thermodynamic process affecting a thermodynamic system without transfer of matter, the law distinguishes two ...
states: ''In a process without transfer of matter, the change in
internal energy The internal energy of a thermodynamic system is the energy of the system as a state function, measured as the quantity of energy necessary to bring the system from its standard internal state to its present internal state of interest, accoun ...
,'' \Delta U'', of a
thermodynamic system A thermodynamic system is a body of matter and/or radiation separate from its surroundings that can be studied using the laws of thermodynamics. Thermodynamic systems can be passive and active according to internal processes. According to inter ...
is equal to the energy gained as heat,'' Q'', less the thermodynamic work,'' W'', done by the system on its surroundings.''The sign convention (Q is heat supplied ''to'' the system as, W is work done ''by'' the system) is that of Rudolf Clausius. The opposite sign convention is customary in chemical thermodynamics. :\Delta U = Q - W. where \Delta U denotes the change in the internal energy of a
closed system A closed system is a natural physical system that does not allow transfer of matter in or out of the system, althoughin the contexts of physics, chemistry, engineering, etc.the transfer of energy (e.g. as work or heat) is allowed. Physics In cl ...
(for which heat or work through the system boundary are possible, but matter transfer is not possible), Q denotes the quantity of energy supplied ''to'' the system as heat, and W denotes the amount of thermodynamic work done ''by'' the system ''on'' its surroundings. An equivalent statement is that perpetual motion machines of the first kind are impossible; work W done by a system on its surrounding requires that the system's internal energy U decrease or be consumed, so that the amount of internal energy lost by that work must be resupplied as heat Q by an external energy source or as work by an external machine acting on the system (so that U is recovered) to make the system work continuously. For processes that include transfer of matter, a further statement is needed: ''With due account of the respective fiducial reference states of the systems, when two systems, which may be of different chemical compositions, initially separated only by an impermeable wall, and otherwise isolated, are combined into a new system by the thermodynamic operation of removal of the wall, then'' :U_0 = U_1 + U_2, ''where'' ''denotes the internal energy of the combined system, and'' ''and'' ''denote the internal energies of the respective separated systems.'' Adapted for thermodynamics, this law is an expression of the principle of
conservation of energy The law of conservation of energy states that the total energy of an isolated system remains constant; it is said to be Conservation law, ''conserved'' over time. In the case of a Closed system#In thermodynamics, closed system, the principle s ...
, which states that energy can be transformed (changed from one form to another), but cannot be created or destroyed. Internal energy is a principal property of the thermodynamic state, while heat and work are modes of energy transfer by which a process may change this state. A change of internal energy of a system may be achieved by any combination of heat added or removed and work performed on or by the system. As a function of state, the internal energy does not depend on the manner, or on the path through intermediate steps, by which the system arrived at its state.


Second law

A traditional version of the
second law of thermodynamics The second law of thermodynamics is a physical law based on Universal (metaphysics), universal empirical observation concerning heat and Energy transformation, energy interconversions. A simple statement of the law is that heat always flows spont ...
states: ''Heat does not spontaneously flow from a colder body to a hotter body.'' The second law refers to a system of matter and radiation, initially with inhomogeneities in temperature, pressure, chemical potential, and other intensive properties, that are due to internal 'constraints', or impermeable rigid walls, within it, or to externally imposed forces. The law observes that, when the system is isolated from the outside world and from those forces, there is a definite thermodynamic quantity, its
entropy Entropy is a scientific concept, most commonly associated with states of disorder, randomness, or uncertainty. The term and the concept are used in diverse fields, from classical thermodynamics, where it was first recognized, to the micros ...
, that increases as the constraints are removed, eventually reaching a maximum value at thermodynamic equilibrium, when the inhomogeneities practically vanish. For systems that are initially far from thermodynamic equilibrium, though several have been proposed, there is known no general physical principle that determines the rates of approach to thermodynamic equilibrium, and thermodynamics does not deal with such rates. The many versions of the second law all express the general irreversibility of the transitions involved in systems approaching thermodynamic equilibrium. In macroscopic thermodynamics, the second law is a basic observation applicable to any actual thermodynamic process; in statistical thermodynamics, the second law is postulated to be a consequence of molecular chaos.


Third law

The
third law of thermodynamics The third law of thermodynamics states that the entropy of a closed system at thermodynamic equilibrium approaches a constant value when its temperature approaches absolute zero. This constant value cannot depend on any other parameters characte ...
states: ''As the temperature of a system approaches absolute zero, all processes cease and the entropy of the system approaches a minimum value.'' This law of thermodynamics is a statistical law of nature regarding entropy and the impossibility of reaching
absolute zero Absolute zero is the lowest possible temperature, a state at which a system's internal energy, and in ideal cases entropy, reach their minimum values. The absolute zero is defined as 0 K on the Kelvin scale, equivalent to −273.15 ° ...
of temperature. This law provides an absolute reference point for the determination of entropy. The entropy determined relative to this point is the absolute entropy. Alternative definitions include "the entropy of all systems and of all states of a system is smallest at absolute zero," or equivalently "it is impossible to reach the absolute zero of temperature by any finite number of processes". Absolute zero, at which all activity would stop if it were possible to achieve, is −273.15 °C (degrees Celsius), or −459.67 °F (degrees Fahrenheit), or 0 K (kelvin), or 0° R (degrees Rankine).


System models

An important concept in thermodynamics is the
thermodynamic system A thermodynamic system is a body of matter and/or radiation separate from its surroundings that can be studied using the laws of thermodynamics. Thermodynamic systems can be passive and active according to internal processes. According to inter ...
, which is a precisely defined region of the universe under study. Everything in the universe except the system is called the ''surroundings''. A system is separated from the remainder of the universe by a ''boundary'' which may be a physical or notional, but serve to confine the system to a finite volume. Segments of the ''boundary'' are often described as ''walls''; they have respective defined 'permeabilities'. Transfers of energy as work, or as
heat In thermodynamics, heat is energy in transfer between a thermodynamic system and its surroundings by such mechanisms as thermal conduction, electromagnetic radiation, and friction, which are microscopic in nature, involving sub-atomic, ato ...
, or of
matter In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic pa ...
, between the system and the surroundings, take place through the walls, according to their respective permeabilities. Matter or energy that pass across the boundary so as to effect a change in the internal energy of the system need to be accounted for in the energy balance equation. The volume contained by the walls can be the region surrounding a single atom resonating energy, such as Max Planck defined in 1900; it can be a body of steam or air in a
steam engine A steam engine is a heat engine that performs Work (physics), mechanical work using steam as its working fluid. The steam engine uses the force produced by steam pressure to push a piston back and forth inside a Cylinder (locomotive), cyl ...
, such as Sadi Carnot defined in 1824. The system could also be just one
nuclide Nuclides (or nucleides, from nucleus, also known as nuclear species) are a class of atoms characterized by their number of protons, ''Z'', their number of neutrons, ''N'', and their nuclear energy state. The word ''nuclide'' was coined by the A ...
(i.e. a system of
quark A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nucleus, atomic nuclei ...
s) as hypothesized in quantum thermodynamics. When a looser viewpoint is adopted, and the requirement of thermodynamic equilibrium is dropped, the system can be the body of a
tropical cyclone A tropical cyclone is a rapidly rotating storm system with a low-pressure area, a closed low-level atmospheric circulation, strong winds, and a spiral arrangement of thunderstorms that produce heavy rain and squalls. Depending on its locat ...
, such as Kerry Emanuel theorized in 1986 in the field of
atmospheric thermodynamics Atmospheric thermodynamics is the study of heat-to-Work (physics), work transformations (and their reverse) that take place in the Earth's atmosphere and manifest as weather or climate. Atmospheric thermodynamics use the laws of classical thermodyn ...
, or the
event horizon In astrophysics, an event horizon is a boundary beyond which events cannot affect an outside observer. Wolfgang Rindler coined the term in the 1950s. In 1784, John Michell proposed that gravity can be strong enough in the vicinity of massive c ...
of a
black hole A black hole is a massive, compact astronomical object so dense that its gravity prevents anything from escaping, even light. Albert Einstein's theory of general relativity predicts that a sufficiently compact mass will form a black hole. Th ...
. Boundaries are of four types: fixed, movable, real, and imaginary. For example, in an engine, a fixed boundary means the piston is locked at its position, within which a constant volume process might occur. If the piston is allowed to move that boundary is movable while the cylinder and cylinder head boundaries are fixed. For closed systems, boundaries are real while for open systems boundaries are often imaginary. In the case of a jet engine, a fixed imaginary boundary might be assumed at the intake of the engine, fixed boundaries along the surface of the case and a second fixed imaginary boundary across the exhaust nozzle. Generally, thermodynamics distinguishes three classes of systems, defined in terms of what is allowed to cross their boundaries: As time passes in an isolated system, internal differences of pressures, densities, and temperatures tend to even out. A system in which all equalizing processes have gone to completion is said to be in a
state State most commonly refers to: * State (polity), a centralized political organization that regulates law and society within a territory **Sovereign state, a sovereign polity in international law, commonly referred to as a country **Nation state, a ...
of thermodynamic equilibrium. Once in thermodynamic equilibrium, a system's properties are, by definition, unchanging in time. Systems in equilibrium are much simpler and easier to understand than are systems which are not in equilibrium. Often, when analysing a dynamic thermodynamic process, the simplifying assumption is made that each intermediate state in the process is at equilibrium, producing thermodynamic processes which develop so slowly as to allow each intermediate step to be an equilibrium state and are said to be reversible processes.


States and processes

When a system is at equilibrium under a given set of conditions, it is said to be in a definite thermodynamic state. The state of the system can be described by a number of state quantities that do not depend on the process by which the system arrived at its state. They are called intensive variables or extensive variables according to how they change when the size of the system changes. The properties of the system can be described by an
equation of state In physics and chemistry, an equation of state is a thermodynamic equation relating state variables, which describe the state of matter under a given set of physical conditions, such as pressure, volume, temperature, or internal energy. Most mo ...
which specifies the relationship between these variables. State may be thought of as the instantaneous quantitative description of a system with a set number of variables held constant. A
thermodynamic process Classical thermodynamics considers three main kinds of thermodynamic processes: (1) changes in a system, (2) cycles in a system, and (3) flow processes. (1) A Thermodynamic process is a process in which the thermodynamic state of a system is c ...
may be defined as the energetic evolution of a thermodynamic system proceeding from an initial state to a final state. It can be described by process quantities. Typically, each thermodynamic process is distinguished from other processes in energetic character according to what parameters, such as temperature, pressure, or volume, etc., are held fixed; Furthermore, it is useful to group these processes into pairs, in which each variable held constant is one member of a conjugate pair. Several commonly studied thermodynamic processes are: *
Adiabatic process An adiabatic process (''adiabatic'' ) is a type of thermodynamic process that occurs without transferring heat between the thermodynamic system and its Environment (systems), environment. Unlike an isothermal process, an adiabatic process transf ...
: occurs without loss or gain of energy by
heat In thermodynamics, heat is energy in transfer between a thermodynamic system and its surroundings by such mechanisms as thermal conduction, electromagnetic radiation, and friction, which are microscopic in nature, involving sub-atomic, ato ...
* Isenthalpic process: occurs at a constant
enthalpy Enthalpy () is the sum of a thermodynamic system's internal energy and the product of its pressure and volume. It is a state function in thermodynamics used in many measurements in chemical, biological, and physical systems at a constant extern ...
*
Isentropic process An isentropic process is an idealized thermodynamic process that is both Adiabatic process, adiabatic and Reversible process (thermodynamics), reversible. The work (physics), work transfers of the system are friction, frictionless, and there is ...
: a reversible adiabatic process, occurs at a constant
entropy Entropy is a scientific concept, most commonly associated with states of disorder, randomness, or uncertainty. The term and the concept are used in diverse fields, from classical thermodynamics, where it was first recognized, to the micros ...
* Isobaric process: occurs at constant
pressure Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country and eve ...
* Isochoric process: occurs at constant
volume Volume is a measure of regions in three-dimensional space. It is often quantified numerically using SI derived units (such as the cubic metre and litre) or by various imperial or US customary units (such as the gallon, quart, cubic inch) ...
(also called isometric/isovolumetric) * Isothermal process: occurs at a constant
temperature Temperature is a physical quantity that quantitatively expresses the attribute of hotness or coldness. Temperature is measurement, measured with a thermometer. It reflects the average kinetic energy of the vibrating and colliding atoms making ...
* Steady state process: occurs without a change in the
internal energy The internal energy of a thermodynamic system is the energy of the system as a state function, measured as the quantity of energy necessary to bring the system from its standard internal state to its present internal state of interest, accoun ...


Instrumentation

There are two types of thermodynamic instruments, the meter and the reservoir. A thermodynamic meter is any device which measures any parameter of a
thermodynamic system A thermodynamic system is a body of matter and/or radiation separate from its surroundings that can be studied using the laws of thermodynamics. Thermodynamic systems can be passive and active according to internal processes. According to inter ...
. In some cases, the thermodynamic parameter is actually defined in terms of an idealized measuring instrument. For example, the zeroth law states that if two bodies are in thermal equilibrium with a third body, they are also in thermal equilibrium with each other. This principle, as noted by James Maxwell in 1872, asserts that it is possible to measure temperature. An idealized
thermometer A thermometer is a device that measures temperature (the hotness or coldness of an object) or temperature gradient (the rates of change of temperature in space). A thermometer has two important elements: (1) a temperature sensor (e.g. the bulb ...
is a sample of an ideal gas at constant pressure. From the
ideal gas law The ideal gas law, also called the general gas equation, is the equation of state of a hypothetical ideal gas. It is a good approximation of the behavior of many gases under many conditions, although it has several limitations. It was first stat ...
''pV=nRT'', the volume of such a sample can be used as an indicator of temperature; in this manner it defines temperature. Although pressure is defined mechanically, a pressure-measuring device, called a
barometer A barometer is a scientific instrument that is used to measure air pressure in a certain environment. Pressure tendency can forecast short term changes in the weather. Many measurements of air pressure are used within surface weather analysis ...
may also be constructed from a sample of an ideal gas held at a constant temperature. A
calorimeter A calorimeter is a device used for calorimetry, or the process of measuring the heat of chemical reactions or physical changes as well as heat capacity. Differential scanning calorimeters, isothermal micro calorimeters, titration calorimeters ...
is a device which is used to measure and define the internal energy of a system. A thermodynamic reservoir is a system which is so large that its state parameters are not appreciably altered when it is brought into contact with the system of interest. When the reservoir is brought into contact with the system, the system is brought into equilibrium with the reservoir. For example, a pressure reservoir is a system at a particular pressure, which imposes that pressure upon the system to which it is mechanically connected. The Earth's atmosphere is often used as a pressure reservoir. The ocean can act as temperature reservoir when used to cool power plants.


Conjugate variables

The central concept of thermodynamics is that of
energy Energy () is the physical quantity, quantitative physical property, property that is transferred to a physical body, body or to a physical system, recognizable in the performance of Work (thermodynamics), work and in the form of heat and l ...
, the ability to do work. By the First Law, the total energy of a system and its surroundings is conserved. Energy may be transferred into a system by heating, compression, or addition of matter, and extracted from a system by cooling, expansion, or extraction of matter. In
mechanics Mechanics () is the area of physics concerned with the relationships between force, matter, and motion among Physical object, physical objects. Forces applied to objects may result in Displacement (vector), displacements, which are changes of ...
, for example, energy transfer equals the product of the force applied to a body and the resulting displacement.
Conjugate variables Conjugate variables are pairs of variables mathematically defined in such a way that they become Fourier transform duals, or more generally are related through Pontryagin duality. The duality relations lead naturally to an uncertainty relation— ...
are pairs of thermodynamic concepts, with the first being akin to a "force" applied to some
thermodynamic system A thermodynamic system is a body of matter and/or radiation separate from its surroundings that can be studied using the laws of thermodynamics. Thermodynamic systems can be passive and active according to internal processes. According to inter ...
, the second being akin to the resulting "displacement", and the product of the two equaling the amount of energy transferred. The common conjugate variables are: *
Pressure Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country and eve ...
-
volume Volume is a measure of regions in three-dimensional space. It is often quantified numerically using SI derived units (such as the cubic metre and litre) or by various imperial or US customary units (such as the gallon, quart, cubic inch) ...
(the mechanical parameters); *
Temperature Temperature is a physical quantity that quantitatively expresses the attribute of hotness or coldness. Temperature is measurement, measured with a thermometer. It reflects the average kinetic energy of the vibrating and colliding atoms making ...
-
entropy Entropy is a scientific concept, most commonly associated with states of disorder, randomness, or uncertainty. The term and the concept are used in diverse fields, from classical thermodynamics, where it was first recognized, to the micros ...
(thermal parameters); *
Chemical potential In thermodynamics, the chemical potential of a Chemical specie, species is the energy that can be absorbed or released due to a change of the particle number of the given species, e.g. in a chemical reaction or phase transition. The chemical potent ...
- particle number (material parameters).


Potentials

Thermodynamic potential Thermodynamics is a branch of physics that deals with heat, Work (thermodynamics), work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation. The behavior of these quantities is governed b ...
s are different quantitative measures of the stored energy in a system. Potentials are used to measure the energy changes in systems as they evolve from an initial state to a final state. The potential used depends on the constraints of the system, such as constant temperature or pressure. For example, the Helmholtz and Gibbs energies are the energies available in a system to do useful work when the temperature and volume or the pressure and temperature are fixed, respectively. Thermodynamic potentials cannot be measured in laboratories, but can be computed using molecular thermodynamics. The five most well known potentials are: where T is the
temperature Temperature is a physical quantity that quantitatively expresses the attribute of hotness or coldness. Temperature is measurement, measured with a thermometer. It reflects the average kinetic energy of the vibrating and colliding atoms making ...
, S the
entropy Entropy is a scientific concept, most commonly associated with states of disorder, randomness, or uncertainty. The term and the concept are used in diverse fields, from classical thermodynamics, where it was first recognized, to the micros ...
, p the
pressure Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country and eve ...
, V the
volume Volume is a measure of regions in three-dimensional space. It is often quantified numerically using SI derived units (such as the cubic metre and litre) or by various imperial or US customary units (such as the gallon, quart, cubic inch) ...
, \mu the
chemical potential In thermodynamics, the chemical potential of a Chemical specie, species is the energy that can be absorbed or released due to a change of the particle number of the given species, e.g. in a chemical reaction or phase transition. The chemical potent ...
, N the number of particles in the system, and i is the count of particles types in the system. Thermodynamic potentials can be derived from the energy balance equation applied to a thermodynamic system. Other thermodynamic potentials can also be obtained through Legendre transformation.


Axiomatic thermodynamics

Axiomatic thermodynamics is a mathematical discipline that aims to describe thermodynamics in terms of rigorous
axiom An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy or ...
s, for example by finding a mathematically rigorous way to express the familiar laws of thermodynamics. The first attempt at an axiomatic theory of thermodynamics was
Constantin Carathéodory Constantin Carathéodory (; 13 September 1873 – 2 February 1950) was a Greeks, Greek mathematician who spent most of his professional career in Germany. He made significant contributions to real and complex analysis, the calculus of variations, ...
's 1909 work ''Investigations on the Foundations of Thermodynamics'', which made use of Pfaffian systems and the concept of adiabatic accessibility, a notion that was introduced by Carathéodory himself. In this formulation, thermodynamic concepts such as
heat In thermodynamics, heat is energy in transfer between a thermodynamic system and its surroundings by such mechanisms as thermal conduction, electromagnetic radiation, and friction, which are microscopic in nature, involving sub-atomic, ato ...
,
entropy Entropy is a scientific concept, most commonly associated with states of disorder, randomness, or uncertainty. The term and the concept are used in diverse fields, from classical thermodynamics, where it was first recognized, to the micros ...
, and
temperature Temperature is a physical quantity that quantitatively expresses the attribute of hotness or coldness. Temperature is measurement, measured with a thermometer. It reflects the average kinetic energy of the vibrating and colliding atoms making ...
are derived from quantities that are more directly measurable. Theories that came after, differed in the sense that they made assumptions regarding
thermodynamic process Classical thermodynamics considers three main kinds of thermodynamic processes: (1) changes in a system, (2) cycles in a system, and (3) flow processes. (1) A Thermodynamic process is a process in which the thermodynamic state of a system is c ...
es with arbitrary initial and final states, as opposed to considering only neighboring states.


Applied fields


See also

* Thermodynamic process path


Lists and timelines

* List of important publications in thermodynamics * List of textbooks on thermodynamics and statistical mechanics * List of thermal conductivities *
List of thermodynamic properties In thermodynamics, a physical property is any property that is measurable, and whose value describes a state of a physical system. Thermodynamic properties are defined as characteristic features of a system, capable of specifying the system's stat ...
* Table of thermodynamic equations * Timeline of thermodynamics * Thermodynamic equations


Notes


References


Further reading

* A nontechnical introduction, good on historical and interpretive matters. * * Vol. 1, pp. 55–349. * * * * 5th ed. (in Russian) * * * * * * The following titles are more technical: * * * *


External links

* *
Thermodynamics Data & Property Calculation Websites

Thermodynamics Educational Websites





Engineering Thermodynamics – A Graphical Approach

Thermodynamics and Statistical Mechanics
by Richard Fitzpatrick {{Authority control Energy Chemical engineering