Chromosomal instability (CIN) is a type of
genomic instability in which
chromosomes
A chromosome is a package of DNA containing part or all of the genetic material of an organism. In most chromosomes, the very long thin DNA fibers are coated with nucleosome-forming packaging proteins; in eukaryotic cells, the most importa ...
are unstable, such that either whole chromosomes or parts of chromosomes are duplicated or deleted. More specifically, CIN refers to the increase in rate of addition or loss of entire chromosomes or sections of them.
The unequal distribution of DNA to daughter cells upon
mitosis
Mitosis () is a part of the cell cycle in eukaryote, eukaryotic cells in which replicated chromosomes are separated into two new Cell nucleus, nuclei. Cell division by mitosis is an equational division which gives rise to genetically identic ...
results in a failure to maintain euploidy (the correct number of
chromosomes
A chromosome is a package of DNA containing part or all of the genetic material of an organism. In most chromosomes, the very long thin DNA fibers are coated with nucleosome-forming packaging proteins; in eukaryotic cells, the most importa ...
) leading to
aneuploidy
Aneuploidy is the presence of an abnormal number of chromosomes in a cell (biology), cell, for example a human somatic (biology), somatic cell having 45 or 47 chromosomes instead of the usual 46. It does not include a difference of one or more plo ...
(incorrect number of chromosomes). In other words, the daughter cells do not have the same number of chromosomes as the cell they originated from. Chromosomal instability is the most common form of genetic instability and cause of aneuploidy.
These changes have been studied in solid tumors (a tumor that usually doesn't contain liquid, pus, or air, compared to liquid tumor), which may or may not be cancerous. CIN is a common occurrence in
solid
Solid is a state of matter where molecules are closely packed and can not slide past each other. Solids resist compression, expansion, or external forces that would alter its shape, with the degree to which they are resisted dependent upon the ...
and
haematological cancers, especially
colorectal cancer
Colorectal cancer (CRC), also known as bowel cancer, colon cancer, or rectal cancer, is the development of cancer from the Colon (anatomy), colon or rectum (parts of the large intestine). Signs and symptoms may include Lower gastrointestinal ...
. Although many tumours show chromosomal abnormalities, CIN is characterised by an increased rate of these errors.
Criteria for CIN definition
* As chromosome instability refers to the rate that chromosomes or large portions of chromosomes are changed, there should be comparisons between cells, or cell populations rather than looking at cells individually in order to determine chromosome instability. These differences should be examined statistically as well.
* The rates in the cell population being tested should be compared to a reference cell population. This is especially true in low phenotype chromosomal instability,
where the changes are subtle.
* The number of cell divisions undergone by a cell population should be related to the rate of chromosomal change.
* A chromosomal instability assay should measure not only whole chromosome change rates, but also the partial chromosomal changes such as deletions, insertions, inversion and amplifications to also take into account segmental aneuploidies.
This provides a more accurate determination of the presence of chromosome instability.
* The results from
polyploid
Polyploidy is a condition in which the biological cell, cells of an organism have more than two paired sets of (Homologous chromosome, homologous) chromosomes. Most species whose cells have Cell nucleus, nuclei (eukaryotes) are diploid, meaning ...
and
diploid
Ploidy () is the number of complete sets of chromosomes in a cell, and hence the number of possible alleles for autosomal and pseudoautosomal genes. Here ''sets of chromosomes'' refers to the number of maternal and paternal chromosome copies, ...
cells should be identified and separately recorded from one another. This is because the fitness cost (survival to next generation) of chromosomal instability is lower in polyploid cells, as the cell has a greater number of chromosomes to make up for the chromosomal instability it experiences.
* Polyploid cells are more prone to chromosomal changes, something that should be taken into account when determining the presence and degree of chromosomal instability
Classification
Numerical CIN is a high rate of either gain or loss of whole chromosomes; causing
aneuploidy
Aneuploidy is the presence of an abnormal number of chromosomes in a cell (biology), cell, for example a human somatic (biology), somatic cell having 45 or 47 chromosomes instead of the usual 46. It does not include a difference of one or more plo ...
. Normal cells make errors in chromosome segregation in 1% of cell divisions, whereas cells with CIN make these errors approximately 20% of cell divisions. Because aneuploidy is a common feature in tumour cells, the presence of aneuploidy in cells does not necessarily mean CIN is present; a high rate of errors is definitive of CIN.
One way of differentiating aneuploidy without CIN and CIN-induced aneuploidy is that CIN causes widely variable (heterogeneous) chromosomal aberrations; whereas when CIN is not the causal factor, chromosomal alterations are often more clonal.
Structural CIN is different in that rather than whole chromosomes, fragments of chromosomes may be duplicated or deleted. The rearrangement of parts of chromosomes (
translocations) and amplifications or deletions within a chromosome may also occur in structural CIN.
How Chromosome instability is generated
Defective DNA damage response
A loss in the repair systems for DNA double-stranded breaks and eroded telomeres can allow chromosomal rearrangements that generate loss, amplification and/or exchange of chromosome segments.
Some inherited genetic predispositions to cancer are the result of mutations in machinery that responds to and repairs DNA double-stranded breaks. Examples include ataxia telangiectasia – which is a mutation in the damage response kinase ATM – and BRCA1 or MRN complex mutations that play a role in responding to DNA damage. When the above components are not functional, the cell can also lose the ability to induce cell-cycle arrest or apoptosis. Therefore, the cell can replicate or segregate incorrect chromosomes.
Faulty rearrangements can occur when homologous recombination fails to accurately repair double-stranded breaks. Since human chromosomes contain repetitive DNA sections, broken DNA segments from one chromosome can combine with similar sequences on a non-homologous chromosome. If repair enzymes do not catch this recombination event, the cell may contain non-reciprocal translocation where parts of non-homologous chromosomes are joined together. Non-homologous end joining can also join two different chromosomes together that had broken ends. The reason non-reciprocal translocations are dangerous is the possibility of producing a dicentric chromosome – a chromosome with two centromeres. When dicentric chromosomes form, a series of events can occur called a
breakage-fusion-bridge cycle
Breakage-fusion-bridge (BFB) cycle (also breakage-rejoining-bridge cycle) is a mechanism of Chromosome instability, chromosomal instability, discovered by Barbara McClintock in the late 1930s.
Mechanism
The BFB cycle begins when the end region of ...
: Spindle fibers attach onto both centromeres in different locations on the chromosome, thereby tearing the chromatid into two pieces during anaphase. The result is a pair of DNAs with broken ends that can attach to other broken-ended DNA segments creating additional translocation and continue the cycle of chromosome breakage and fusion. As the cycle continues, more chromosome translocations result, leading to the amplification or loss of large DNA fragments. Some of these changes will kill the cell, however, in a few rare cases, the rearrangements can lead to a viable cell without
tumor suppressor
A tumor suppressor gene (TSG), or anti-oncogene, is a gene that regulates a cell (biology), cell during cell division and replication. If the cell grows uncontrollably, it will result in cancer. When a tumor suppressor gene is mutated, it results ...
genes and increased expression of
proto-oncogenes that may become a tumor cell.
Degenerating telomeres
Telomere
A telomere (; ) is a region of repetitive nucleotide sequences associated with specialized proteins at the ends of linear chromosomes (see #Sequences, Sequences). Telomeres are a widespread genetic feature most commonly found in eukaryotes. In ...
s – which are a protective ‘cap’ at the end of DNA molecules – normally shorten in each replication cycle. In certain cell types, the
telomerase
Telomerase, also called terminal transferase, is a ribonucleoprotein that adds a species-dependent telomere repeat sequence to the 3' end of telomeres. A telomere is a region of repetitive sequences at each end of the chromosomes of most euka ...
enzyme can re-synthesize the telomere sequences, however, it is not present in all somatic cells. Once 25-50 divisions pass, the telomeres can be completely lost, inducing
p53 to either permanently arrest the cell or induce apoptosis. Telomere shortening and p53 expression is a key mechanism to prevent uncontrolled replication and tumor development because even cells that excessively proliferate will eventually be inhibited.
However, telomere degeneration can also induce tumorigenesis in other cells. The key difference is the presence of a functional p53 damage response. When tumor cells have a mutation in p53 that results in a non-functional protein, telomeres can continue to shorten and proliferate, and the eroded segments are susceptible to chromosomal rearrangements through recombination and breakage-fusion-bridge cycles. Telomere loss can be lethal for many cells, but in the few that are able to restore the expression of telomerase can bring about a “stable” yet tumorigenic chromosome structure. Telomere degeneration thereby explains the transient period of extreme chromosomal instability observed in many emerging tumors.
In experiments on mice where both telomerase and p53 were knocked out, they developed carcinomas with significant chromosomal instability similar to tumors seen in humans.
Additional theories
Spindle assembly checkpoint (SAC) abnormalities: The SAC normally delays cell division until all of the chromosomes are accurately attached to the spindle fibers at the
kinetochore
A kinetochore (, ) is a flared oblique-shaped protein structure associated with duplicated chromatids in eukaryotic cells where the spindle fibers, which can be thought of as the ropes pulling chromosomes apart, attach during cell division to ...
. Merotelic attachments – when a single kinetochore is connected to microtubules from both spindle poles. Merotelic attachments are not recognized by the SAC, so the cell can attempt to proceed through
anaphase
Anaphase () is the stage of mitosis after the process of metaphase, when replicated chromosomes are split and the newly-copied chromosomes (daughter chromatids) are moved to opposite poles of the cell. Chromosomes also reach their overall maxim ...
. Consequently, the chromatids may lag on the mitotic spindle and not segregate, leading to aneuploidy and chromosome instability.
Chromosome instability and aneuploidy
CIN often results in
aneuploidy
Aneuploidy is the presence of an abnormal number of chromosomes in a cell (biology), cell, for example a human somatic (biology), somatic cell having 45 or 47 chromosomes instead of the usual 46. It does not include a difference of one or more plo ...
. There are three ways that aneuploidy can occur. It can occur due to loss of a whole chromosome, gain of a whole chromosome or rearrangement of partial chromosomes known as gross
chromosomal rearrangement
In genetics, a chromosomal rearrangement is a mutation that is a type of chromosome abnormality involving a change in the structure of the native chromosome. Such changes may involve several different classes of events, like deletions, duplicati ...
s (GCR). All of these are hallmarks of some
cancers
Cancer is a group of diseases involving Cell growth#Disorders, abnormal cell growth with the potential to Invasion (cancer), invade or Metastasis, spread to other parts of the body. These contrast with benign tumors, which do not spread. Po ...
.
Most cancer cells are aneuploid, meaning that they have an abnormal number of chromosomes which often have significant structural abnormalities such as chromosomal translocations, where sections of one chromosome are exchanged or attached onto another. Changes in ploidy can alter expression of proto-oncogenes or tumor suppressor genes.
Segmental aneuploidy can occur due to deletions, amplifications or translocations, which arise from breaks in DNA,
while loss and gain of whole chromosomes is often due to errors during mitosis.
Genome integrity
Chromosomes consist of the DNA sequence, and the proteins (such as
histones
In biology, histones are highly Base (chemistry), basic proteins abundant in lysine and arginine residues that are found in eukaryotic cell nuclei and in most Archaea, Archaeal Phylum, phyla. They act as spools around which DNA winds to create st ...
) that are responsible for its packaging into chromosomes. Therefore, when referring to chromosome instability,
epigenetic
In biology, epigenetics is the study of changes in gene expression that happen without changes to the DNA sequence. The Greek prefix ''epi-'' (ἐπι- "over, outside of, around") in ''epigenetics'' implies features that are "on top of" or "in ...
changes can also come into play. Genes on the other hand, refer only to the DNA sequence (hereditary unit) and it is not necessary that they will be expressed once epigenetic factors are taken into account. Disorders such as chromosome instability can be inherited via genes, or acquired later in life due to environmental exposure. One way that Chromosome Instability can be acquired is by exposure to ionizing radiation.
Radiation is known to cause DNA damage, which can cause errors in cell replication, which may result in chromosomal instability. Chromosomal instability can in turn cause cancer.
However, chromosomal instability syndromes such as
Bloom syndrome,
ataxia telangiectasia and
Fanconi anaemia are inherited
and are considered to be genetic diseases. These disorders are associated with tumor genesis, but often have a phenotype on the individuals as well. The genes that control chromosome instability are known as chromosome instability genes and they control pathways such as mitosis, DNA replication, repair and modification.
They also control transcription, and process nuclear transport.
Chromosome instability and cancer
Cancer cells often exhibit chromosomal abnormalities, including chromosomal rearrangements (such as translocations), deletions, and duplications. These abnormalities can disrupt the normal function of genes involved in
cell cycle regulation, leading to uncontrolled cell growth and tumor formation. The chromosome theory of cancer is a long-standing idea originated from the work of
Theodor Boveri, a German biologist, in the early 20th century. Boveri's studies on
sea urchin
Sea urchins or urchins () are echinoderms in the class (biology), class Echinoidea. About 950 species live on the seabed, inhabiting all oceans and depth zones from the intertidal zone to deep seas of . They typically have a globular body cove ...
eggs provided early evidence that abnormal chromosome numbers could lead to developmental defects, leading him to propose a connection between
chromosomal abnormalities and cancer. Further research by scientists such as
David Hungerford and
Peter Nowell in the 1960s identified specific chromosomal abnormalities in
cancer cells, such as the
Philadelphia chromosome
The Philadelphia chromosome or Philadelphia translocation (Ph) is an abnormal version of chromosome 22 where a part of the ''ABL (gene), Abelson murine leukemia'' 1 (''ABL1'') gene on chromosome 9 breaks off and attaches to the ''BCR (gene), break ...
in
chronic myeloid leukemia, providing more support for the chromosomal theory of cancer. The
chromosomal
A chromosome is a package of DNA containing part or all of the genetic material of an organism. In most chromosomes, the very long thin DNA fibers are coated with nucleosome-forming packaging proteins; in eukaryotic cells, the most importa ...
theory of
cancer
Cancer is a group of diseases involving Cell growth#Disorders, abnormal cell growth with the potential to Invasion (cancer), invade or Metastasis, spread to other parts of the body. These contrast with benign tumors, which do not spread. Po ...
is a fundamental concept in
cancer biology that suggests cancer is caused by
genetic changes, particularly alterations in the structure or number of
chromosome
A chromosome is a package of DNA containing part or all of the genetic material of an organism. In most chromosomes, the very long thin DNA fibers are coated with nucleosome-forming packaging proteins; in eukaryotic cells, the most import ...
s in
cells. These changes can lead to uncontrolled
cell growth
Cell most often refers to:
* Cell (biology), the functional basic unit of life
* Cellphone, a phone connected to a cellular network
* Clandestine cell, a penetration-resistant form of a secret or outlawed organization
* Electrochemical cell, a de ...
, a hallmark of cancer.
CIN is a more pervasive mechanism in cancer genetic instability than simple accumulation of point mutations. The degree of instability varies between cancer types. For example, in cancers where mismatch repair mechanisms are defective – like some colon and breast cancers – their chromosomes are relatively stable.
Cancers can go through periods of extreme instability where chromosome number can vary within the population. Rapid chromosomal instability is thought to be caused by telomere erosion. However, the period of rapid change is transient as tumor cells generally reach an equilibrium abnormal chromosome content and number.
The research associated with chromosomal instability is associated with solid tumors, which are tumors that refer to a solid mass of cancer cells that grow in organ systems and can occur anywhere in the body. These tumors are opposed to liquid tumors, which occur in the blood, bone marrow, and lymph nodes.
Although chromosome instability has long been proposed to promote tumor progression, recent studies suggest that chromosome instability can either promote or suppress tumor progression.
[ The difference between the two are related to the amount of chromosomal instability taking place, as a small rate of chromosomal instability leads to tumor progression, or in other words cancer, while a large rate of chromosomal instability is often lethal to cancer.] This is due to the fact that a large rate of chromosomal instability is detrimental to the survival mechanisms of the cell, and the cancer cell cannot replicate and dies (apoptosis). Therefore, the relationship between chromosomal instability and cancer can also be used to assist with diagnosis of malignant vs. benign tumors.
The level of chromosome instability is influenced both by DNA damage during the cell cycle
The cell cycle, or cell-division cycle, is the sequential series of events that take place in a cell (biology), cell that causes it to divide into two daughter cells. These events include the growth of the cell, duplication of its DNA (DNA re ...
and the effectiveness of the DNA damage response in repairing damage. The DNA damage response during interphase
Interphase is the active portion of the cell cycle that includes the G1, S, and G2 phases, where the cell grows, replicates its DNA, and prepares for mitosis, respectively. Interphase was formerly called the "resting phase," but the cell i ...
of the cell cycle
The cell cycle, or cell-division cycle, is the sequential series of events that take place in a cell (biology), cell that causes it to divide into two daughter cells. These events include the growth of the cell, duplication of its DNA (DNA re ...
(G1, S and G2 phases) helps protect the genome
A genome is all the genetic information of an organism. It consists of nucleotide sequences of DNA (or RNA in RNA viruses). The nuclear genome includes protein-coding genes and non-coding genes, other functional regions of the genome such as ...
against structural and numerical cancer chromosome instability. However untimely activation of the DNA damage response once cells have committed to the mitosis
Mitosis () is a part of the cell cycle in eukaryote, eukaryotic cells in which replicated chromosomes are separated into two new Cell nucleus, nuclei. Cell division by mitosis is an equational division which gives rise to genetically identic ...
stage of the cell cycle appears to undermine genome integrity and induce chromosome segregation errors.
A majority of human solid malignant tumors is characterized by chromosomal instability, and have gain or loss of whole chromosomes or fractions of chromosomes. For example, the majority of colorectal and other solid cancers have chromosomal instability (CIN). This shows that chromosomal instability can be responsible for the development of solid cancers. However, genetic alterations in a tumor do not necessarily indicate that the tumor is genetically unstable, as ‘genomic instability’ refers to various instability phenotypes, including the chromosome instability phenotype
The role of CIN in carcinogenesis has been heavily debated. While some argue the canonical theory of oncogene
An oncogene is a gene that has the potential to cause cancer. In tumor cells, these genes are often mutated, or expressed at high levels. activation and tumor suppressor gene
A tumor suppressor gene (TSG), or anti-oncogene, is a gene that regulates a cell (biology), cell during cell division and replication. If the cell grows uncontrollably, it will result in cancer. When a tumor suppressor gene is mutated, it results ...
inactivation, such as Robert Weinberg, some have argued that CIN may play a major role in the origin of cancer cells, since CIN confers a mutator phenotype that enables a cell to accumulate large number of mutations at the same time. Scientists active in this debate include Christoph Lengauer, Kenneth W. Kinzler, Keith R. Loeb, Lawrence A. Loeb, Bert Vogelstein and Peter Duesberg.
Current research in cancer genetics is focused on further understanding the role of chromosomal abnormalities in cancer development and progression. Advances in technology, such as next-generation sequencing
In genetics and biochemistry, sequencing means to determine the primary structure (sometimes incorrectly called the primary sequence) of an unbranched biopolymer. Sequencing results in a symbolic linear depiction known as a sequence which succ ...
, are enabling researchers to study chromosomal abnormalities in cancer cells with greater detail and precision.
Chromosome instability in anticancer therapy
Hypothetically, the heterogeneous gene expression that can occur in a cell with CIN, the rapid genomic changes can drive the emergence of drug-resistant tumor cells. While some studies show that CIN is associated with poor patient outcomes and drug resistance, conversely, others studies actually find that people respond better with high CIN tumors.
Some researchers believe that CIN can be stimulated and exploited to generate lethal interactions in tumor cells. ER negative breast cancer patients with the most extreme CIN have the best prognosis, with similar results for ovarian, gastric and non-small cell lung cancers. A potential therapeutic strategy therefore could be to exacerbate CIN specifically in tumor cells to induce cell death. For example, ''BRCA1
Breast cancer type 1 susceptibility protein is a protein that in humans is encoded by the ''BRCA1'' () gene. Orthologs are common in other vertebrate species, whereas invertebrate genomes may encode a more distantly related gene. ''BRCA1'' is a ...
'', ''BRCA2
''BRCA2'' and BRCA2 () are human genes and their protein products, respectively. The official symbol (BRCA2, italic for the gene, nonitalic for the protein) and the official name (originally breast cancer 2; currently BRCA2, DNA repair associate ...
'' and BC-deficient cells have a sensitivity to poly(ADP-ribose) polymerase (PARP) which helps repair single-stranded breaks. When PARP is inhibited, the replication fork can collapse. Therefore, PARP tumor suppressing drugs could selectively inhibit ''BRCA'' tumors and cause catastrophic effects to breast cancer cells. Clinical trials of PARP inhibition are ongoing.
There is still a worry that targeting CIN in therapy could trigger genome chaos that actually increases CIN that leads to selection of proliferative advantages.
Targeted therapies, such as imatinib for chronic myeloid leukemia and trastuzumab
Trastuzumab, sold under the brand name Herceptin among others, is a monoclonal antibody used to treat breast cancer and stomach cancer. It is specifically used for cancer that is HER2 receptor positive. It may be used by itself or together ...
for HER2-positive breast cancer, have been developed based on the specific chromosomal abnormalities associated with these cancers.
Chromosome instability and metastasis
Chromosomal instability has been identified as a genomic driver of metastasis. Chromosome segregation errors during mitosis lead to the formation of structures called micronuclei. These micronuclei, which reside outside of the main nucleus have defective envelopes and often rupture exposing their genomic DNA content to the cytoplasm. Exposure of double-stranded DNA to the cytosol activates anti-viral pathways, such as the cGAS-STING cytosolic DNA-sensing pathway. This pathway is normally involved in cellular immune defenses against viral infections. Tumor cells hijack chronic activation of innate immune pathways to spread to distant organs, suggesting that CIN drives metastasis through chronic inflammation stemming in a cancer cell-intrinsic manner.
Diagnostic methods
Chromosomal instability can be diagnosed using analytical techniques at the cellular level. Often used to diagnose CIN is cytogenetics flow cytometry
Flow cytometry (FC) is a technique used to detect and measure the physical and chemical characteristics of a population of cells or particles.
In this process, a sample containing cells or particles is suspended in a fluid and injected into the ...
, Comparative genomic hybridization and Polymerase Chain Reaction
The polymerase chain reaction (PCR) is a method widely used to make millions to billions of copies of a specific DNA sample rapidly, allowing scientists to amplify a very small sample of DNA (or a part of it) sufficiently to enable detailed st ...
. Karyotyping
A karyotype is the general appearance of the complete set of chromosomes in the cells of a species or in an individual organism, mainly including their sizes, numbers, and shapes. Karyotyping is the process by which a karyotype is discerned by de ...
, and fluorescence in situ hybridization (FISH) are other techniques that can be used. In Comparative genomic hybridization, since the DNA is extracted from large cell populations it is likely that several gains and losses will be identified.
Karyotyping is used for Fanconi Anemia, based on 73-hour whole-blood cultures, which are then stained with Giemsa. Following staining they are observed for microscopically visible chromatid-type aberrations
See also
* Microsatellite instability, another form of genomic instability
References
Further reading
*
*
Chromosomal abnormalities
Chromosomes