
In
algebra
Algebra is a branch of mathematics that deals with abstract systems, known as algebraic structures, and the manipulation of expressions within those systems. It is a generalization of arithmetic that introduces variables and algebraic ope ...
, the Bring radical or ultraradical of a
real number
In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
''a'' is the unique real
root
In vascular plants, the roots are the plant organ, organs of a plant that are modified to provide anchorage for the plant and take in water and nutrients into the plant body, which allows plants to grow taller and faster. They are most often bel ...
of the
polynomial
In mathematics, a polynomial is a Expression (mathematics), mathematical expression consisting of indeterminate (variable), indeterminates (also called variable (mathematics), variables) and coefficients, that involves only the operations of addit ...
The Bring radical of a
complex number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
''a'' is either any of the five roots of the above polynomial (it is thus
multi-valued
In mathematics, a multivalued function, multiple-valued function, many-valued function, or multifunction, is a function that has two or more values in its range for at least one point in its domain. It is a set-valued function with additional p ...
), or a specific root, which is usually chosen such that the Bring radical is real-valued for real ''a'' and is an
analytic function
In mathematics, an analytic function is a function that is locally given by a convergent power series. There exist both real analytic functions and complex analytic functions. Functions of each type are infinitely differentiable, but complex ...
in a neighborhood of the real line. Because of the existence of four
branch point
In the mathematical field of complex analysis, a branch point of a multivalued function is a point such that if the function is n-valued (has n values) at that point, all of its neighborhoods contain a point that has more than n values. Multi-valu ...
s, the Bring radical cannot be defined as a function that is continuous over the whole
complex plane
In mathematics, the complex plane is the plane (geometry), plane formed by the complex numbers, with a Cartesian coordinate system such that the horizontal -axis, called the real axis, is formed by the real numbers, and the vertical -axis, call ...
, and its domain of continuity must exclude four
branch cut
In the mathematical field of complex analysis, a branch point of a multivalued function is a point such that if the function is n-valued (has n values) at that point, all of its neighborhoods contain a point that has more than n values. Multi-valu ...
s.
George Jerrard showed that some
quintic equation
In mathematics, a quintic function is a function of the form
:g(x)=ax^5+bx^4+cx^3+dx^2+ex+f,\,
where , , , , and are members of a field, typically the rational numbers, the real numbers or the complex numbers, and is nonzero. In other word ...
s can be
solved in closed form using
radicals and Bring radicals, which had been introduced by
Erland Bring.
In this article, the Bring radical of ''a'' is denoted
For real argument, it is odd, monotonically decreasing, and unbounded, with asymptotic behavior
for large
.
Normal forms
The quintic equation is rather difficult to obtain solutions for directly, with five independent coefficients in its most general form:
The various methods for solving the quintic that have been developed generally attempt to simplify the quintic using
Tschirnhaus transformation
In mathematics, a Tschirnhaus transformation, also known as Tschirnhausen transformation, is a type of mapping on polynomials developed by Ehrenfried Walther von Tschirnhaus in 1683.
Simply, it is a method for transforming a polynomial equation ...
s to reduce the number of independent coefficients.
Principal quintic form
The general quintic may be reduced into what is known as the principal quintic form, with the quartic and cubic terms removed:
If the roots of a general quintic and a principal quintic are related by a quadratic
Tschirnhaus transformation
In mathematics, a Tschirnhaus transformation, also known as Tschirnhausen transformation, is a type of mapping on polynomials developed by Ehrenfried Walther von Tschirnhaus in 1683.
Simply, it is a method for transforming a polynomial equation ...
the coefficients
and
may be determined by using the
resultant
In mathematics, the resultant of two polynomials is a polynomial expression of their coefficients that is equal to zero if and only if the polynomials have a common root (possibly in a field extension), or, equivalently, a common factor (over th ...
, or by means of the
power sums of the roots and
Newton's identities
In mathematics, Newton's identities, also known as the Girard–Newton formulae, give relations between two types of symmetric polynomials, namely between power sums and elementary symmetric polynomials. Evaluated at the roots of a monic polynomi ...
. This leads to a system of equations in
and
consisting of a quadratic and a linear equation, and either of the two sets of solutions may be used to obtain the corresponding three coefficients of the principal quintic form.
[
]
This form is used by
Felix Klein
Felix Christian Klein (; ; 25 April 1849 – 22 June 1925) was a German mathematician and Mathematics education, mathematics educator, known for his work in group theory, complex analysis, non-Euclidean geometry, and the associations betwe ...
's solution to the quintic.
[
]
Bring–Jerrard normal form
It is possible to simplify the quintic still further and eliminate the quadratic term, producing the Bring–Jerrard normal form:
Using the power-sum formulae again with a cubic transformation as
Tschirnhaus tried does not work, since the resulting system of equations results in a sixth-degree equation. But in 1796
Bring found a way around this by using a quartic Tschirnhaus transformation to relate the roots of a principal quintic to those of a Bring–Jerrard quintic:
The extra parameter this fourth-order transformation provides allowed Bring to decrease the degrees of the other parameters. This leads to a system of five equations in six unknowns, which then requires the solution of a cubic and a quadratic equation. This method was also discovered by
Jerrard in 1852,
but it is likely that he was unaware of Bring's previous work in this area.
[ The full transformation may readily be accomplished using a ]computer algebra
In mathematics and computer science, computer algebra, also called symbolic computation or algebraic computation, is a scientific area that refers to the study and development of algorithms and software for manipulating expression (mathematics), ...
package such as Mathematica
Wolfram (previously known as Mathematica and Wolfram Mathematica) is a software system with built-in libraries for several areas of technical computing that allows machine learning, statistics, symbolic computation, data manipulation, network ...
[
]
or Maple
''Acer'' is a genus of trees and shrubs commonly known as maples. The genus is placed in the soapberry family Sapindaceae.Stevens, P. F. (2001 onwards). Angiosperm Phylogeny Website. Version 9, June 2008 nd more or less continuously updated si ...
.[
]
As might be expected from the complexity of these transformations, the resulting expressions can be enormous, particularly when compared to the solutions in radicals for lower degree equations, taking many megabytes of storage for a general quintic with symbolic coefficients.
Regarded as an algebraic function, the solutions to
involve two variables, ''d''1 and ''d''0; however, the reduction is actually to an algebraic function of one variable, very much analogous to a solution in radicals, since we may further reduce the Bring–Jerrard form. If we for instance set
then we reduce the equation to the form
which involves ''z'' as an algebraic function of a single variable , where . This form is required by the Hermite–Kronecker–Brioschi method, Glasser's method, and the Cockle–Harley method of differential resolvents described below.
An alternative form is obtained by setting
so that
where . This form is used to define the Bring radical below.
Brioschi normal form
There is another one-parameter normal form for the quintic equation, known as Brioschi normal form
which can be derived by using the rational Tschirnhaus transformation
to relate the roots of a general quintic to a Brioschi quintic. The values of the parameters and may be derived by using polyhedral functions on the Riemann sphere
In mathematics, the Riemann sphere, named after Bernhard Riemann,
is a Mathematical model, model of the extended complex plane (also called the closed complex plane): the complex plane plus one point at infinity. This extended plane represents ...
, and are related to the partition of an object of icosahedral symmetry
In mathematics, and especially in geometry, an object has icosahedral symmetry if it has the same symmetries as a regular icosahedron. Examples of other polyhedra with icosahedral symmetry include the regular dodecahedron (the dual polyhedr ...
into five objects of tetrahedral symmetry
image:tetrahedron.svg, 150px, A regular tetrahedron, an example of a solid with full tetrahedral symmetry
A regular tetrahedron has 12 rotational (or orientation-preserving) symmetries, and a symmetry order of 24 including transformations that co ...
.[
]
This Tschirnhaus transformation is rather simpler than the difficult one used to transform a principal quintic into Bring–Jerrard form. This normal form is used by the Doyle–McMullen iteration method and the Kiepert method.
Series representation
A Taylor series
In mathematics, the Taylor series or Taylor expansion of a function is an infinite sum of terms that are expressed in terms of the function's derivatives at a single point. For most common functions, the function and the sum of its Taylor ser ...
for Bring radicals, as well as a representation in terms of hypergeometric function
In mathematics, the Gaussian or ordinary hypergeometric function 2''F''1(''a'',''b'';''c'';''z'') is a special function represented by the hypergeometric series, that includes many other special functions as specific or limiting cases. It is ...
s can be derived as follows. The equation can be rewritten as By setting the desired solution is since is odd.
The series for can then be obtained by reversion of the Taylor series
In mathematics, the Taylor series or Taylor expansion of a function is an infinite sum of terms that are expressed in terms of the function's derivatives at a single point. For most common functions, the function and the sum of its Taylor ser ...
for (which is simply ), giving
where the absolute values of the coefficients form sequence A002294 in the OEIS
The On-Line Encyclopedia of Integer Sequences (OEIS) is an online database of integer sequences. It was created and maintained by Neil Sloane while researching at AT&T Labs. He transferred the intellectual property and hosting of the OEIS to th ...
. The radius of convergence
In mathematics, the radius of convergence of a power series is the radius of the largest Disk (mathematics), disk at the Power series, center of the series in which the series Convergent series, converges. It is either a non-negative real number o ...
of the series is
In hypergeometric form, the Bring radical can be written as
It may be interesting to compare with the hypergeometric functions that arise below in Glasser's derivation and the method of differential resolvents.
Solution of the general quintic
The roots of the polynomial
can be expressed in terms of the Bring radical as
and its four conjugates. The problem is now reduced to the Bring–Jerrard form in terms of solvable polynomial equations, and using transformations involving polynomial expressions in the roots only up to the fourth degree, which means inverting the transformation may be done by finding the roots of a polynomial solvable in radicals. This procedure gives extraneous solutions, but when the correct ones have been found by numerical means, the roots of the quintic can be written in terms of square roots, cube roots, and the Bring radical, which is therefore an algebraic solution in terms of algebraic functions (defined broadly to include Bring radicals) of a single variable — an algebraic solution of the general quintic.
Other characterizations
Many other characterizations of the Bring radical have been developed, the first of which is in terms of "elliptic transcendents" (related to elliptic and modular functions) by Charles Hermite
Charles Hermite () FRS FRSE MIAS (24 December 1822 – 14 January 1901) was a French mathematician who did research concerning number theory, quadratic forms, invariant theory, orthogonal polynomials, elliptic functions, and algebra.
Hermite p ...
in 1858, and further methods later developed by other mathematicians.
The Hermite–Kronecker–Brioschi characterization
In 1858, Charles Hermite[
]
published the first known solution to the general quintic equation in terms of "elliptic transcendents", and at around the same time Francesco Brioschi
and Leopold Kronecker
Leopold Kronecker (; 7 December 1823 – 29 December 1891) was a German mathematician who worked on number theory, abstract algebra and logic, and criticized Georg Cantor's work on set theory. Heinrich Weber quoted Kronecker
as having said, ...
came upon equivalent solutions. Hermite arrived at this solution by generalizing the well-known solution to the cubic equation
In algebra, a cubic equation in one variable is an equation of the form
ax^3+bx^2+cx+d=0
in which is not zero.
The solutions of this equation are called roots of the cubic function defined by the left-hand side of the equation. If all of th ...
in terms of trigonometric function
In mathematics, the trigonometric functions (also called circular functions, angle functions or goniometric functions) are real functions which relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in all ...
s and finds the solution to a quintic in Bring–Jerrard form:
into which any quintic equation may be reduced by means of Tschirnhaus transformations as has been shown. He observed that elliptic function
In the mathematical field of complex analysis, elliptic functions are special kinds of meromorphic functions, that satisfy two periodicity conditions. They are named elliptic functions because they come from elliptic integrals. Those integrals are ...
s had an analogous role to play in the solution of the Bring–Jerrard quintic as the trigonometric functions had for the cubic. For and write them as the complete elliptic integrals of the first kind:
where
Define the two "elliptic transcendents":[ and These functions are related to the Jacobi theta functions by and ]
They can be equivalently defined by infinite series:[The coefficients of the Fourier series expansions are given as follows: If and , then and where , , , , , , , , , and the sequences and are -periodic.]
If ''n'' is a prime number
A prime number (or a prime) is a natural number greater than 1 that is not a Product (mathematics), product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime ...
, we can define two values and as follows:
and
When ''n'' is an odd prime, the parameters and are linked by an equation of degree ''n'' + 1 in ,[When ''n'' = 2, the parameters are linked by an equation of degree 8 in .] , known as the modular equation
In mathematics, a modular equation is an algebraic equation satisfied by ''moduli'', in the sense of moduli problems. That is, given a number of functions on a moduli space, a modular equation is an equation holding between them, or in other wor ...
, whose roots in are given by:[Some references define and Then the modular equation is solved in instead and has the roots and ]
and
where is 1 or −1 depending on whether 2 is a quadratic residue modulo ''n'' or not, respectively,[Equivalently, (by the law of quadratic reciprocity).] and . For ''n'' = 5, we have the modular equation:
with six roots in as shown above.
The modular equation with may be related to the Bring–Jerrard quintic by the following function of the six roots of the modular equation (In Hermite's ''Sur la théorie des équations modulaires et la résolution de l'équation du cinquième degré'', the first factor is incorrectly given as