HOME

TheInfoList



OR:

Brainbow is a process by which individual
neurons A neuron (American English), neurone (British English), or nerve cell, is an membrane potential#Cell excitability, excitable cell (biology), cell that fires electric signals called action potentials across a neural network (biology), neural net ...
in the
brain The brain is an organ (biology), organ that serves as the center of the nervous system in all vertebrate and most invertebrate animals. It consists of nervous tissue and is typically located in the head (cephalization), usually near organs for ...
can be distinguished from neighboring neurons using fluorescent proteins. By randomly expressing different ratios of red, green, and blue derivatives of
green fluorescent protein The green fluorescent protein (GFP) is a protein that exhibits green fluorescence when exposed to light in the blue to ultraviolet range. The label ''GFP'' traditionally refers to the protein first isolated from the jellyfish ''Aequorea victo ...
in individual neurons, it is possible to flag each neuron with a distinctive color. This process has been a major contribution to the field of neural
connectomics Connectomics is the production and study of connectomes, which are comprehensive maps of connections within an organism's nervous system. Study of neuronal wiring diagrams looks at how they contribute to the health and behavior of an organism. ...
. The technique was originally developed in 2007 by a team led by Jeff W. Lichtman and Joshua R. Sanes, both at
Harvard University Harvard University is a Private university, private Ivy League research university in Cambridge, Massachusetts, United States. Founded in 1636 and named for its first benefactor, the History of the Puritans in North America, Puritan clergyma ...
. The original technique has been adapted for use with other model research organisms including the fruit fly (''
Drosophila melanogaster ''Drosophila melanogaster'' is a species of fly (an insect of the Order (biology), order Diptera) in the family Drosophilidae. The species is often referred to as the fruit fly or lesser fruit fly, or less commonly the "vinegar fly", "pomace fly" ...
''), zebrafish (''
Danio rerio The zebrafish (''Danio rerio'') is a species of freshwater ray-finned fish belonging to the family Danionidae of the order Cypriniformes. Native to South Asia, it is a popular aquarium fish, frequently sold under the trade name zebra danio (a ...
''), and ''
Arabidopsis thaliana ''Arabidopsis thaliana'', the thale cress, mouse-ear cress or arabidopsis, is a small plant from the mustard family (Brassicaceae), native to Eurasia and Africa. Commonly found along the shoulders of roads and in disturbed land, it is generally ...
''. While earlier labeling techniques allowed for the mapping of only a few neurons, this new method allows more than 100 differently mapped neurons to be simultaneously and differentially illuminated in this manner. This leads to its characteristic multicolored appearance on imaging, earning its name and winning awards in science photography competitions.


History and development

Brainbow was initially developed by Jeff W. Lichtman and Joshua R. Sanes at
Washington University in St. Louis Washington University in St. Louis (WashU) is a private research university in St. Louis, Missouri, United States. Founded in 1853 by a group of civic leaders and named for George Washington, the university spans 355 acres across its Danforth ...
. The team constructed Brainbow using a two-step process: first, a specific genetic construct was generated that could be recombined in multiple arrangements to produce one of either three or four colors based on the particular fluorescent proteins (XFPs) being implemented. Next, multiple copies of the same
transgenic A transgene is a gene that has been transferred naturally, or by any of a number of genetic engineering techniques, from one organism to another. The introduction of a transgene, in a process known as transgenesis, has the potential to change the ...
construct were inserted into the
genome A genome is all the genetic information of an organism. It consists of nucleotide sequences of DNA (or RNA in RNA viruses). The nuclear genome includes protein-coding genes and non-coding genes, other functional regions of the genome such as ...
of the target species, resulting in the random expression of different XFP ratios and subsequently causing different cells to exhibit a variety of colorful hues. Brainbow was originally created as an improvement over more traditional
neuroimaging Neuroimaging is the use of quantitative (computational) techniques to study the neuroanatomy, structure and function of the central nervous system, developed as an objective way of scientifically studying the healthy human brain in a non-invasive ...
techniques, such as Golgi staining and dye injection, both of which presented severe limitations to researchers in their ability to visualize the intricate architecture of neural circuitry in the
brain The brain is an organ (biology), organ that serves as the center of the nervous system in all vertebrate and most invertebrate animals. It consists of nervous tissue and is typically located in the head (cephalization), usually near organs for ...
. While older techniques were only able to stain cells with a constricted range of colors, often utilizing bi- and tri-color
transgenic mice A genetically modified mouse, genetically engineered mouse model (GEMM) or transgenic mouse is a mouse (''Mus musculus'') that has had its genome altered through the use of genetic engineering techniques. Genetically modified mice are commonly use ...
to unveil limited information in regards to neuronal structures, Brainbow is much more flexible in that it has the capacity to fluorescently label individual neurons with up to approximately 100 different hues so that scientists can identify and even differentiate between
dendritic Dendrite derives from the Greek word "dendron" meaning ( "tree-like"), and may refer to: Biology *Dendrite, a branched projection of a neuron *Dendrite (non-neuronal), branching projections of certain skin cells and immune cells Physical *Dendri ...
and
axonal An axon (from Greek ἄξων ''áxōn'', axis) or nerve fiber (or nerve fibre: see spelling differences) is a long, slender projection of a nerve cell, or neuron, in vertebrates, that typically conducts electrical impulses known as action pote ...
processes. By revealing such detailed information about neuronal connectivity and patterns, sometimes even in vivo, scientists are often able to infer information regarding neuronal interactions and their subsequent impact upon behavior and function. Thus, Brainbow filled the void left by previous neuroimaging methods. With the recent advent of Brainbow in
neuroscience Neuroscience is the scientific study of the nervous system (the brain, spinal cord, and peripheral nervous system), its functions, and its disorders. It is a multidisciplinary science that combines physiology, anatomy, molecular biology, ...
, researchers are now able to construct specific maps of neural circuits and better investigate how these relate to various mental activities and their connected behaviors (i.e. Brainbow reveals information about the interconnections between neurons and their subsequent interactions that affect overall brain functionality). As a further extrapolation of this method, Brainbow can therefore also be used to study both neurological and psychological disorders by analyzing differences in neural maps.


Methods

Brainbow techniques rely on the
Cre-Lox recombination Cre-Lox recombination is a site-specific recombinase technology, used to carry out deletions, insertions, translocations and inversions at specific sites in the DNA of cells. It allows the DNA modification to be targeted to a specific cell typ ...
, in which the protein Cre recombinase drives inversion or excision of
DNA Deoxyribonucleic acid (; DNA) is a polymer composed of two polynucleotide chains that coil around each other to form a double helix. The polymer carries genetic instructions for the development, functioning, growth and reproduction of al ...
between loxP sites. The original Brainbow method includes both Brainbow-1 and Brainbow-2, which utilize different forms of cre/lox recombination. Brainbow-3, a modified version of Brainbow-1, was developed in 2013. For all Brainbow subtypes, the expression of a given XFP is a stochastic, or random, event. Brainbow-1 uses
DNA construct A DNA construct is an artificially-designed segment of DNA borne on a Vector (molecular biology), vector that can be used to incorporate genetic material into a target Biological tissue, tissue or Cell (biology), cell. A DNA construct contains a DNA ...
s with different fluorescent protein genes (XFPs) separated by mutant and canonical forms of loxP. This creates a set of mutually exclusive excision possibilities, since cre-mediated recombination occurs only between identical loxP sites. After recombination occurs, the fluorescent protein that is left directly after the promoter is uniquely expressed. Thus, a construct with four XFPs separated by three different loxP sites, three excision events, and the original construct can produce four different fluorescent proteins. Brainbow-2 uses Cre excision and inversion to allow multiple expression possibilities in a given construct. In one DNA segment with two oppositely oriented XFPs, Cre will induce a random inversion event that leaves one fluorescent protein in the proper orientation for expression. If two of these invertible sequences are aligned, three different inversion events are possible. When excision events are also considered, one of four fluorescent proteins will be expressed for a given combination of Cre excisions and inversions. Brainbow-3 retains the Brainbow-1 loxP format, but replaces the RFP, YFP, and CFP genes with mOrange2, EGFP, and mKate2. mO2, EGFP, and mK2 were chosen both because their fluorescent excitation and emission spectra overlap minimally, and because they share minimal sequence homology, allowing for the design of selective antibodies that can be used to detect them in
immunohistochemical Immunohistochemistry is a form of immunostaining. It involves the process of selectively identifying antigens in cells and tissue, by exploiting the principle of antibodies binding specifically to antigens in biological tissues. Albert Hewett ...
protocols. Brainbow-3 also addresses the issue of uneven filling of neurons with XFPs by using farnesylated derivatives of the XFPs, which are more evenly trafficked to neuronal membranes. Brainbow is implemented
in vivo Studies that are ''in vivo'' (Latin for "within the living"; often not italicized in English) are those in which the effects of various biological entities are tested on whole, living organisms or cells, usually animals, including humans, an ...
by crossing two
transgenic A transgene is a gene that has been transferred naturally, or by any of a number of genetic engineering techniques, from one organism to another. The introduction of a transgene, in a process known as transgenesis, has the potential to change the ...
organism strains: one that expresses the Cre protein and another that has been transfected with several versions of a loxP/XFP construct. Using multiple copies of the
transgene A transgene is a gene that has been transferred naturally, or by any of a number of genetic engineering techniques, from one organism to another. The introduction of a transgene, in a process known as transgenesis, has the potential to change the ...
allows the XFPs to combine in a way that can give one of approximately 100 different colors. Thus, each neuron is labeled with a different hue based on its given combinatorial and stochastic expression of fluorescent proteins. In order to elucidate differential XFP expression patterns into a visible form, brain slices are imaged with
confocal microscopy Confocal microscopy, most frequently confocal laser scanning microscopy (CLSM) or laser scanning confocal microscopy (LSCM), is an optical imaging technique for increasing optical resolution and contrast (vision), contrast of a micrograph by me ...
. When exposed to a
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that can ...
with its particular excitation wavelength, each
fluorophore A fluorophore (or fluorochrome, similarly to a chromophore) is a fluorescent chemical compound that can re-emit light upon light excitation. Fluorophores typically contain several combined aromatic groups, or planar or cyclic molecules with se ...
emits a signal that is collected into a red, green, or blue channel, and the resultant light combination is analyzed with data analysis software. Superimposition of differentially colored neurons allows visual disentanglement of complicated neural circuits. Brainbow has predominantly been tested in mice to date; however, the basic technique described above has also been modified for use in more recent studies since the advent of the original method introduced in 2007.


Mice

The
mouse brain A mouse (: mice) is a small rodent. Characteristically, mice are known to have a pointed snout, small rounded ears, a body-length scaly tail, and a high breeding rate. The best known mouse species is the common house mouse (''Mus musculus'' ...
has 75,000,000
neurons A neuron (American English), neurone (British English), or nerve cell, is an membrane potential#Cell excitability, excitable cell (biology), cell that fires electric signals called action potentials across a neural network (biology), neural net ...
and is more similar to a human brain than
drosophila ''Drosophila'' (), from Ancient Greek δρόσος (''drósos''), meaning "dew", and φίλος (''phílos''), meaning "loving", is a genus of fly, belonging to the family Drosophilidae, whose members are often called "small fruit flies" or p ...
and other commonly used organisms to model this technique, such as '' C. elegans''. Mice were the first organisms in which the Brainbow method of neuroimaging was successfully employed. Livet et al. (2007) developed two versions of Brainbow mice using Brainbow-1 and Brainbow-2, which are described above. In using these methods to create a complete map and track the axons of a mouse muscle, it is necessary to collect tens of thousands of images and compile them into stacks to create a complete schematic. It is then possible to trace each motor axon and its synaptic contacts to construct a complete
connectome A connectome () is a comprehensive map of neural connections in the brain, and may be thought of as its " wiring diagram". These maps are available in varying levels of detail. A functional connectome shows connections between various brain ...
of the muscle. More examples of neurons examined using the Brainbow technique in
transgenic A transgene is a gene that has been transferred naturally, or by any of a number of genetic engineering techniques, from one organism to another. The introduction of a transgene, in a process known as transgenesis, has the potential to change the ...
mice are located in the motor nerve innervating ear muscles, axon tracts in the
brainstem The brainstem (or brain stem) is the posterior stalk-like part of the brain that connects the cerebrum with the spinal cord. In the human brain the brainstem is composed of the midbrain, the pons, and the medulla oblongata. The midbrain is conti ...
, and the hippocampal dentate gyrus.


''Drosophila''

The complexity of the ''Drosophila'' brain, consisting of about 100,000 neurons, makes it an excellent candidate for implementing neurophysiology and neuroscience techniques like Brainbow. In fact, Stefanie Hampel et al. (2011) combined Brainbow in conjunction with genetic targeting tools to identify individual neurons within the ''Drosophila'' brain and various neuronal lineages. One of the genetic targeting tools was a GAL4/UAS binary expression system that controls the expression of UAS-Brainbow and targets the expression to small groups of neurons. Utilizing ‘Flip Out’ methods increased the cellular resolution of the reporter construct. The expression of fluorescent proteins, as with the original Brainbow, depended on Cre recombination corresponding with matched lox sites. Hampel et al. (2011) also developed their own variation of Brainbow (dBrainbow), based on antibody labeling of epitopes rather than endogenous fluorescence. Two copies of their construct yield six bright, separable colors. This, along with simplifications in color assignment, enabled them to observe the trajectories of each neuron over long distances. Specifically, they traced motor neurons from the
antennal lobe The antennal lobe is the primary (first order) olfactory brain area in insects. The antennal lobe is a sphere-shaped deutocerebral neuropil in the brain that receives input from the olfactory sensory neurons in the antennae and mouthparts. Functi ...
to neuromuscular junctions, allowing them to identify the specific muscle targets of individual neurons. Ultimately, this technique provides the ability to efficaciously map the neuronal circuitry in ''Drosophila'' so that researchers are able to uncover more information about the brain structure of this invertebrate and how it relates to its ensuing behavior.


Zebrafish

Zebrafish The zebrafish (''Danio rerio'') is a species of freshwater ray-finned fish belonging to the family Danionidae of the order Cypriniformes. Native to South Asia, it is a popular aquarium fish, frequently sold under the trade name zebra danio (an ...
(''Danio rerio'') is a vertebrate model in which neurodevelopment can be easily studied because the embryos are transparent and develop externally. Zebrabow was based on the original Brainbow to study the nervous system and has been modified to study other tissues in zebrafish as well.


Limitations

As with any
neuroimaging Neuroimaging is the use of quantitative (computational) techniques to study the neuroanatomy, structure and function of the central nervous system, developed as an objective way of scientifically studying the healthy human brain in a non-invasive ...
technique, Brainbow has a number of limitations that stem from the methods required to perform it. For example, the process of breeding at least two strains of transgenic animals from embryonic stem cells is both time-consuming and complex. Even if two
transgenic A transgene is a gene that has been transferred naturally, or by any of a number of genetic engineering techniques, from one organism to another. The introduction of a transgene, in a process known as transgenesis, has the potential to change the ...
species are successfully created, not all of their offspring will show the recombination. Thus, this requires extensive planning prior to performing an experiment. In addition, due to the random nature in the expression of the fluorescent proteins, scientists are unable to precisely control the labeling of neural circuitry, which may result in the poor identification of specific neurons. The use of brainbow in
mammalian A mammal () is a vertebrate animal of the Class (biology), class Mammalia (). Mammals are characterised by the presence of milk-producing mammary glands for feeding their young, a broad neocortex region of the brain, fur or hair, and three ...
populations is also hampered by the incredible diversity of neurons of the
central nervous system The central nervous system (CNS) is the part of the nervous system consisting primarily of the brain, spinal cord and retina. The CNS is so named because the brain integrates the received information and coordinates and influences the activity o ...
. The sheer density of
neurons A neuron (American English), neurone (British English), or nerve cell, is an membrane potential#Cell excitability, excitable cell (biology), cell that fires electric signals called action potentials across a neural network (biology), neural net ...
coupled with the presence of long tracts of axons make viewing larger regions of the CNS with high resolution difficult. Brainbow is most useful when examining single cell resolution against the background of a complex multicellular environment. However, due to the resolution limits of
optical microscopy Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultravio ...
, conclusive identification of synaptic connections between neurons is not easily accomplished. This issue is somewhat avoided by the use of synaptic markers to supplement the use of optical microscopy in viewing synaptic connections.


See also

* GFP *
Fluorescence Fluorescence is one of two kinds of photoluminescence, the emission of light by a substance that has absorbed light or other electromagnetic radiation. When exposed to ultraviolet radiation, many substances will glow (fluoresce) with colore ...
*
Cre-Lox recombination Cre-Lox recombination is a site-specific recombinase technology, used to carry out deletions, insertions, translocations and inversions at specific sites in the DNA of cells. It allows the DNA modification to be targeted to a specific cell typ ...


References

{{reflist


External links


Podcast
on NPR's ''
Science Friday ''Science Friday'' (known as ''SciFri'' for short) is a weekly call-in talk show that broadcasts each Friday on public radio stations, distributed by WNYC Studios, and carried on over 500 public radio stations. ''SciFri'' is hosted by science ...
''
"Brainbow" A cool use of GFP
Cell imaging Fluorescent proteins Neuroimaging