Nanoelectronics refers to the use of
nanotechnology
Nanotechnology is the manipulation of matter with at least one dimension sized from 1 to 100 nanometers (nm). At this scale, commonly known as the nanoscale, surface area and quantum mechanical effects become important in describing propertie ...
in
electronic components. The term covers a diverse set of devices and materials, with the common characteristic that they are so small that inter-atomic interactions and
quantum mechanical
Quantum mechanics is the fundamental physical theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Addison-Wesley, 1989, It is the foundation of a ...
properties need to be studied extensively. Some of these candidates include: hybrid molecular/
semiconductor
A semiconductor is a material with electrical conductivity between that of a conductor and an insulator. Its conductivity can be modified by adding impurities (" doping") to its crystal structure. When two regions with different doping level ...
electronics, one-dimensional
nanotube
A nanotube is a nanoscale cylindrical structure with a hollow core, typically composed of carbon atoms, though other materials can also form nanotubes. Carbon nanotubes (CNTs) are the most well-known and widely studied type, consisting of rolled- ...
s/
nanowire
file:[email protected], upright=1.2, Crystalline 2×2-atom tin selenide nanowire grown inside a single-wall carbon nanotube (tube diameter ≈1 nm).
A nanowire is a nanostructure in the form of a wire with the diameter of the order of a nanometre ( ...
s (e.g.
carbon nanotube
A carbon nanotube (CNT) is a tube made of carbon with a diameter in the nanometre range ( nanoscale). They are one of the allotropes of carbon. Two broad classes of carbon nanotubes are recognized:
* ''Single-walled carbon nanotubes'' (''S ...
or
silicon nanowire
Silicon nanowires, also referred to as SiNWs, are a type of semiconductor nanowire most often formed from a silicon precursor by etching of a solid or through catalyzed growth from a vapor or liquid phase. Such nanowires have promising applications ...
s) or advanced
molecular electronics
Molecular electronics is the study and application of molecular building blocks for the fabrication of electronic components. It is an interdisciplinary area that spans physics, chemistry, and materials science. It provides a potential means to ...
.
Nanoelectronic devices have critical dimensions with a size range between
1 nm and
100 nm. Recent
silicon
Silicon is a chemical element; it has symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic lustre, and is a tetravalent metalloid (sometimes considered a non-metal) and semiconductor. It is a membe ...
MOSFET
upright=1.3, Two power MOSFETs in amperes">A in the ''on'' state, dissipating up to about 100 watt">W and controlling a load of over 2000 W. A matchstick is pictured for scale.
In electronics, the metal–oxide–semiconductor field- ...
(metal–oxide–semiconductor field-effect transistor, or MOS transistor) technology generations are already within this regime, including
22 nanometers CMOS
Complementary metal–oxide–semiconductor (CMOS, pronounced "sea-moss
", , ) is a type of MOSFET, metal–oxide–semiconductor field-effect transistor (MOSFET) semiconductor device fabrication, fabrication process that uses complementary an ...
(complementary MOS)
nodes and succeeding
14 nm
The "14 nanometer process" refers to a marketing term for the MOSFET technology node that is the successor to the "22nm" (or "20nm") node. The "14nm" was so named by the International Technology Roadmap for Semiconductors (ITRS). Until about ...
,
10 nm and
7 nm
In semiconductor manufacturing, the "7 nm" process is a term for the MOSFET technology node following the 10 nm process, "10 nm" node, defined by the International Roadmap for Devices and Systems (IRDS), which was preceded by the International T ...
FinFET
A fin field-effect transistor (FinFET) is a multigate device, a MOSFET (metal–oxide–semiconductor field-effect transistor) built on a substrate where the gate is placed on two, three, or four sides of the channel or wrapped around the chann ...
(fin field-effect transistor) generations. Nanoelectronics is sometimes considered as
disruptive technology because present candidates are significantly different from traditional
transistors
A transistor is a semiconductor device used to Electronic amplifier, amplify or electronic switch, switch electrical signals and electric power, power. It is one of the basic building blocks of modern electronics. It is composed of semicondu ...
.
Fundamental concepts
In 1965,
Gordon Moore
Gordon Earle Moore (January 3, 1929 – March 24, 2023) was an American businessman, engineer, and the co-founder and emeritus chairman of Intel Corporation. He proposed Moore's law which makes the observation that the number of transistors i ...
observed that silicon transistors were undergoing a continual process of scaling downward, an observation which was later codified as
Moore's law
Moore's law is the observation that the Transistor count, number of transistors in an integrated circuit (IC) doubles about every two years. Moore's law is an observation and Forecasting, projection of a historical trend. Rather than a law of ...
. Since his observation, transistor minimum feature sizes have decreased from 10 micrometers to the 10 nm range as of 2019. Note that the
technology node
Semiconductor device fabrication is the process used to manufacture semiconductor devices, typically integrated circuits (ICs) such as microprocessors, microcontrollers, and memories (such as RAM and flash memory). It is a multiple-step photolit ...
doesn't directly represent the minimum feature size. The field of nanoelectronics aims to enable the continued realization of this law by using new methods and materials to build electronic devices with feature sizes on the
nanoscale
Nanotechnology is the manipulation of matter with at least one dimension sized from 1 to 100 nanometers (nm). At this scale, commonly known as the nanoscale, surface area and quantum mechanical effects become important in describing propertie ...
.
Mechanical issues
The
volume
Volume is a measure of regions in three-dimensional space. It is often quantified numerically using SI derived units (such as the cubic metre and litre) or by various imperial or US customary units (such as the gallon, quart, cubic inch) ...
of an object decreases as the third power of its linear dimensions, but the
surface area
The surface area (symbol ''A'') of a solid object is a measure of the total area that the surface of the object occupies. The mathematical definition of surface area in the presence of curved surfaces is considerably more involved than the d ...
only decreases as its second power. This somewhat subtle and unavoidable principle has significant ramifications. For example, the
power
Power may refer to:
Common meanings
* Power (physics), meaning "rate of doing work"
** Engine power, the power put out by an engine
** Electric power, a type of energy
* Power (social and political), the ability to influence people or events
Math ...
of a
drill
A drill is a tool used for making round holes or driving fasteners. It is fitted with a drill bit for making holes, or a screwdriver bit for securing fasteners. Historically, they were powered by hand, and later mains power, but cordless b ...
(or any other machine) is proportional to the volume, while the
friction
Friction is the force resisting the relative motion of solid surfaces, fluid layers, and material elements sliding against each other. Types of friction include dry, fluid, lubricated, skin, and internal -- an incomplete list. The study of t ...
of the drill's
bearings and
gear
A gear or gearwheel is a rotating machine part typically used to transmit rotational motion and/or torque by means of a series of teeth that engage with compatible teeth of another gear or other part. The teeth can be integral saliences or ...
s is proportional to their surface area. For a normal-sized drill, the power of the device is enough to handily overcome any friction. However, scaling its length down by a factor of 1000, for example, decreases its power by 1000
3 (a factor of a billion) while reducing the friction by only 1000
2 (a factor of only a million). Proportionally it has 1000 times less power per unit friction than the original drill. If the original friction-to-power ratio was, say, 1%, that implies the smaller drill will have 10 times as much friction as power; the drill is useless.
For this reason, while super-miniature electronic
integrated circuit
An integrated circuit (IC), also known as a microchip or simply chip, is a set of electronic circuits, consisting of various electronic components (such as transistors, resistors, and capacitors) and their interconnections. These components a ...
s are fully functional, the same technology cannot be used to make working mechanical devices beyond the scales where frictional forces start to exceed the available power. So even though you may see microphotographs of delicately etched silicon gears, such devices are currently little more than curiosities with limited real world applications, for example, in moving mirrors and shutters. Surface tension increases in much the same way, thus magnifying the tendency for very small objects to stick together. This could possibly make any kind of
"micro factory" impractical: even if robotic arms and hands could be scaled down, anything they pick up will tend to be impossible to put down. The above being said,
molecular evolution
Molecular evolution describes how Heredity, inherited DNA and/or RNA change over evolutionary time, and the consequences of this for proteins and other components of Cell (biology), cells and organisms. Molecular evolution is the basis of phylogen ...
has resulted in working
cilia
The cilium (: cilia; ; in Medieval Latin and in anatomy, ''cilium'') is a short hair-like membrane protrusion from many types of eukaryotic cell. (Cilia are absent in bacteria and archaea.) The cilium has the shape of a slender threadlike proj ...
,
flagella
A flagellum (; : flagella) (Latin for 'whip' or 'scourge') is a hair-like appendage that protrudes from certain plant and animal sperm cells, from fungal spores ( zoospores), and from a wide range of microorganisms to provide motility. Many pr ...
, muscle fibers and rotary motors in aqueous environments, all on the nanoscale. These machines exploit the increased frictional forces found at the micro or nanoscale. Unlike a paddle or a propeller which depends on normal frictional forces (the frictional forces perpendicular to the surface) to achieve propulsion, cilia develop motion from the exaggerated drag or laminar forces (frictional forces parallel to the surface) present at micro and nano dimensions. To build meaningful "machines" at the nanoscale, the relevant forces need to be considered. We are faced with the development and design of intrinsically pertinent machines rather than the simple reproductions of macroscopic ones.
All scaling issues therefore need to be assessed thoroughly when evaluating nanotechnology for practical applications.
Approaches
Nanofabrication
For example, electron transistors, which involve transistor operation based on a single electron.
Nanoelectromechanical systems
Nanoelectromechanical systems (NEMS) are a class of devices integrating electrical and mechanical functionality on the nanoscale. NEMS form the next logical miniaturization step from so-called microelectromechanical systems, or MEMS devices. NE ...
also fall under this category.
Nanofabrication can be used to construct ultradense parallel arrays of
nanowire
file:[email protected], upright=1.2, Crystalline 2×2-atom tin selenide nanowire grown inside a single-wall carbon nanotube (tube diameter ≈1 nm).
A nanowire is a nanostructure in the form of a wire with the diameter of the order of a nanometre ( ...
s, as an alternative to synthesizing
nanowire
file:[email protected], upright=1.2, Crystalline 2×2-atom tin selenide nanowire grown inside a single-wall carbon nanotube (tube diameter ≈1 nm).
A nanowire is a nanostructure in the form of a wire with the diameter of the order of a nanometre ( ...
s individually. Of particular prominence in this field,
silicon nanowire
Silicon nanowires, also referred to as SiNWs, are a type of semiconductor nanowire most often formed from a silicon precursor by etching of a solid or through catalyzed growth from a vapor or liquid phase. Such nanowires have promising applications ...
s are being increasingly studied towards diverse applications in nanoelectronics, energy conversion and storage. Such
SiNWs can be fabricated by
thermal oxidation
In microfabrication, thermal oxidation is a way to produce a thin layer of oxide (usually silicon dioxide) on the surface of a wafer. The technique forces an oxidizing agent to diffuse into the wafer at high temperature and react with it. The ra ...
in large quantities to yield nanowires with controllable thickness.
Nanomaterials electronics
Besides being small and allowing more transistors to be packed into a single chip, the uniform and symmetrical structure of
nanowires
upright=1.2, Crystalline 2×2-atom tin selenide nanowire grown inside a single-wall carbon nanotube (tube diameter ≈1 nm).
A nanowire is a nanostructure in the form of a wire with the diameter of the order of a nanometre (10−9 m). Mor ...
and/or
nanotube
A nanotube is a nanoscale cylindrical structure with a hollow core, typically composed of carbon atoms, though other materials can also form nanotubes. Carbon nanotubes (CNTs) are the most well-known and widely studied type, consisting of rolled- ...
s
allows a higher
electron mobility
In solid-state physics, the electron mobility characterizes how quickly an electron can move through a metal or semiconductor when pushed or pulled by an electric field. There is an analogous quantity for Electron hole, holes, called hole mobilit ...
(faster electron movement in the material), a higher
dielectric
In electromagnetism, a dielectric (or dielectric medium) is an Insulator (electricity), electrical insulator that can be Polarisability, polarised by an applied electric field. When a dielectric material is placed in an electric field, electric ...
constant (faster frequency), and a symmetrical
electron
The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
/
hole
A hole is an opening in or through a particular medium, usually a solid Body (physics), body. Holes occur through natural and artificial processes, and may be useful for various purposes, or may represent a problem needing to be addressed in m ...
characteristic.
Also,
nanoparticle
A nanoparticle or ultrafine particle is a particle of matter 1 to 100 nanometres (nm) in diameter. The term is sometimes used for larger particles, up to 500 nm, or fibers and tubes that are less than 100 nm in only two directions. At ...
s can be used as
quantum dot
Quantum dots (QDs) or semiconductor nanocrystals are semiconductor particles a few nanometres in size with optical and electronic properties that differ from those of larger particles via quantum mechanical effects. They are a central topic i ...
s.
Molecular electronics
Single-molecule electronic devices are extensively researched. These schemes would make heavy use of
molecular self-assembly
In chemistry and materials science, molecular self-assembly is the process by which molecules adopt a defined arrangement without guidance or management from an outside source. There are two types of self-assembly: intermolecular and intramolec ...
, designing the device components to construct a larger structure or even a complete system on their own. This can be very useful for
reconfigurable computing
Reconfigurable computing is a computer architecture combining some of the flexibility of software with the high performance of hardware by processing with flexible hardware platforms like FPGA, field-programmable gate arrays (FPGAs). The princip ...
, and may even completely replace present
FPGA
A field-programmable gate array (FPGA) is a type of configurable integrated circuit that can be repeatedly programmed after manufacturing. FPGAs are a subset of logic devices referred to as programmable logic devices (PLDs). They consist of a ...
technology.
Molecular electronics
is a technology under development brings hope for future atomic-scale electronic systems. A promising application of molecular electronics was proposed by the IBM researcher Ari Aviram and the theoretical chemist
Mark Ratner in their 1974 and 1988 papers ''Molecules for Memory, Logic and Amplification'' (see
unimolecular rectifier).
Many
nanowire
file:[email protected], upright=1.2, Crystalline 2×2-atom tin selenide nanowire grown inside a single-wall carbon nanotube (tube diameter ≈1 nm).
A nanowire is a nanostructure in the form of a wire with the diameter of the order of a nanometre ( ...
structures have been studied as candidates for interconnecting nanoelectronic devices:
nanotube
A nanotube is a nanoscale cylindrical structure with a hollow core, typically composed of carbon atoms, though other materials can also form nanotubes. Carbon nanotubes (CNTs) are the most well-known and widely studied type, consisting of rolled- ...
s of carbon and other materials,
metal atom chaines,
cumulene
A cumulene is a compound having three or more ''cumulative'' (consecutive) double bonds. They are analogous to allenes, only having a more extensive chain. The simplest molecule in this class is butatriene (), which is also called simply ''cumu ...
or
polyyne
A polyyne is any organic compound with alternating Single bond, single and triple bonds; that is, a series of consecutive alkynes, with ''n'' greater than 1. These compounds are also called polyacetylenes, especially in the natural products and ...
carbon atom chains,
and many polymers such as
polythiophene
Polythiophenes (PTs) are polymerized thiophenes, a sulfur heterocyclic compound, heterocycle. The parent PT is an insoluble colored solid with the formula (C4H2S)n.Strictly speaking, "polythiophene" is a misnomer, since the polymer consists of ...
s.
Other approaches
Nanoionics studies the transport of ions rather than electrons in nanoscale systems.
Nanophotonics
Nanophotonics or nano-optics is the study of the behavior of light on the nanometer scale, and of the interaction of nanometer-scale objects with light. It is a branch of optics, optical engineering, electrical engineering, and nanotechnology. I ...
studies the behavior of light on the nanoscale, and has the goal of developing devices that take advantage of this behavior.
Nanoelectronic devices
Current high-technology production processes are based on traditional top down strategies, where nanotechnology has already been introduced silently. The critical length scale of
integrated circuits
An integrated circuit (IC), also known as a microchip or simply chip, is a set of electronic circuits, consisting of various electronic components (such as transistors, resistors, and capacitors) and their interconnections. These components a ...
is already at the nanoscale (50
nm and below) regarding the gate length of transistors in
CPUs or
DRAM
Dram, DRAM, or drams may refer to:
Technology and engineering
* Dram (unit), a unit of mass and volume, and an informal name for a small amount of liquor, especially whisky or whiskey
* Dynamic random-access memory, a type of electronic semicondu ...
devices.
Computers

Nanoelectronics holds the promise of making
computer processor
Cryptominer, In computing and computer science, a processor or processing unit is an electrical component (circuit (computer science), digital circuit) that performs operations on an external data source, usually Memory (computing), memory or som ...
s more powerful than are possible with conventional
semiconductor fabrication
Semiconductor device fabrication is the process used to manufacture semiconductor devices, typically integrated circuits (ICs) such as microprocessors, microcontrollers, and memories (such as RAM and flash memory). It is a multiple-step photol ...
techniques. A number of approaches are currently being researched, including new forms of
nanolithography
Nanolithography (NL) is a growing field of techniques within nanotechnology dealing with the engineering (patterning e.g. etching, depositing, writing, printing etc) of Nanometre, nanometer-scale structures on various materials.
The modern term r ...
, as well as the use of
nanomaterials
Nanomaterials describe, in principle, chemical substances or materials of which a single unit is sized (in at least one dimension) between 1 and 100 nm (the usual definition of nanoscale).
Nanomaterials research takes a materials science ...
such as
nanowire
file:[email protected], upright=1.2, Crystalline 2×2-atom tin selenide nanowire grown inside a single-wall carbon nanotube (tube diameter ≈1 nm).
A nanowire is a nanostructure in the form of a wire with the diameter of the order of a nanometre ( ...
s or
small molecules
In molecular biology and pharmacology, a small molecule or micromolecule is a low molecular weight (≤ 1000 daltons) organic compound that may regulate a biological process, with a size on the order of 1 nm. Many drugs are small molecules; t ...
in place of traditional
CMOS
Complementary metal–oxide–semiconductor (CMOS, pronounced "sea-moss
", , ) is a type of MOSFET, metal–oxide–semiconductor field-effect transistor (MOSFET) semiconductor device fabrication, fabrication process that uses complementary an ...
components.
Field-effect transistor
The field-effect transistor (FET) is a type of transistor that uses an electric field to control the current through a semiconductor. It comes in two types: junction FET (JFET) and metal-oxide-semiconductor FET (MOSFET). FETs have three termi ...
s have been made using both semiconducting
carbon nanotube
A carbon nanotube (CNT) is a tube made of carbon with a diameter in the nanometre range ( nanoscale). They are one of the allotropes of carbon. Two broad classes of carbon nanotubes are recognized:
* ''Single-walled carbon nanotubes'' (''S ...
s and with heterostructured semiconductor
nanowires
upright=1.2, Crystalline 2×2-atom tin selenide nanowire grown inside a single-wall carbon nanotube (tube diameter ≈1 nm).
A nanowire is a nanostructure in the form of a wire with the diameter of the order of a nanometre (10−9 m). Mor ...
(SiNWs).
Memory storage
Electronic memory designs in the past have largely relied on the formation of transistors. However, research into
crossbar switch
In electronics and telecommunications, a crossbar switch (cross-point switch, matrix switch) is a collection of switches arranged in a Matrix (mathematics), matrix configuration. A crossbar switch has multiple input and output lines that form a ...
based electronics have offered an alternative using reconfigurable interconnections between vertical and horizontal wiring arrays to create ultra high density memories. Two leaders in this area are
Nantero which has developed a carbon nanotube based crossbar memory called
Nano-RAM
Nano-RAM is a proprietary computer memory technology from the company Nantero. It is a type of non-volatile memory, nonvolatile random-access memory based on the position of carbon nanotubes deposited on a chip-like substrate. In theory, the small ...
and
Hewlett-Packard
The Hewlett-Packard Company, commonly shortened to Hewlett-Packard ( ) or HP, was an American multinational information technology company. It was founded by Bill Hewlett and David Packard in 1939 in a one-car garage in Palo Alto, California ...
which has proposed the use of
memristor
A memristor (; a portmanteau of ''memory resistor'') is a non-linear two-terminal electrical component relating electric charge and magnetic flux linkage. It was described and named in 1971 by Leon Chua, completing a theoretical quartet of ...
material as a future replacement of Flash memory.
An example of such novel devices is based on
spintronics
Spintronics (a portmanteau meaning spin transport electronics), also known as spin electronics, is the study of the intrinsic spin of the electron and its associated magnetic moment, in addition to its fundamental electronic charge, in solid-st ...
. The dependence of the resistance of a material (due to the spin of the electrons) on an external field is called
magnetoresistance
Magnetoresistance is the tendency of a material (often ferromagnetic) to change the value of its electrical resistance in an externally-applied magnetic field. There are a variety of effects that can be called magnetoresistance. Some occur in bulk ...
. This effect can be significantly amplified (GMR - Giant Magneto-Resistance) for nanosized objects, for example when two ferromagnetic layers are separated by a nonmagnetic layer, which is several nanometers thick (e.g. Co-Cu-Co). The GMR effect has led to a strong increase in the data storage density of hard disks and made the gigabyte range possible. The so-called tunneling magnetoresistance (TMR) is very similar to GMR and based on the spin dependent tunneling of electrons through adjacent ferromagnetic layers. Both GMR and TMR effects can be used to create a non-volatile main memory for computers, such as the so-called magnetic random access memory or
MRAM.
Novel optoelectronic devices
In the modern communication technology traditional analog electrical devices are increasingly replaced by optical or
optoelectronic
Optoelectronics (or optronics) is the study and application of electronic devices and systems that find, detect and control light, usually considered a sub-field of photonics. In this context, ''light'' often includes invisible forms of radia ...
devices due to their enormous bandwidth and capacity, respectively. Two promising examples are
photonic crystals and
quantum dots
Quantum dots (QDs) or semiconductor nanocrystals are semiconductor particles a few nanometres in size with optical and electronic properties that differ from those of larger particles via quantum mechanical effects. They are a central topic i ...
. Photonic crystals are materials with a periodic variation in the refractive index with a lattice constant that is half the wavelength of the light used. They offer a selectable band gap for the propagation of a certain wavelength, thus they resemble a semiconductor, but for light or
photon
A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that can ...
s instead of
electron
The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
s. Quantum dots are nanoscaled objects, which can be used, among many other things, for the construction of lasers. The advantage of a quantum dot laser over the traditional semiconductor laser is that their emitted wavelength depends on the diameter of the dot. Quantum dot lasers are cheaper and offer a higher beam quality than conventional laser diodes.
Displays
The production of displays with low energy consumption might be accomplished using
carbon nanotube
A carbon nanotube (CNT) is a tube made of carbon with a diameter in the nanometre range ( nanoscale). They are one of the allotropes of carbon. Two broad classes of carbon nanotubes are recognized:
* ''Single-walled carbon nanotubes'' (''S ...
s (CNT) and/or
silicon nanowire
Silicon nanowires, also referred to as SiNWs, are a type of semiconductor nanowire most often formed from a silicon precursor by etching of a solid or through catalyzed growth from a vapor or liquid phase. Such nanowires have promising applications ...
s. Such nanostructures are electrically conductive and due to their small diameter of several nanometers, they can be used as field emitters with extremely high efficiency for
field-emission display
A field-emission display (FED) is a flat panel display technology that uses large-area field electron emission sources to provide electrons that strike colored phosphor to produce a color image. In a general sense, an FED consists of a matrix of ...
s (FED). The principle of operation resembles that of the
cathode-ray tube
A cathode-ray tube (CRT) is a vacuum tube containing one or more electron guns, which emit electron beams that are manipulated to display images on a phosphorescent screen. The images may represent electrical waveforms on an oscilloscope, a ...
, but on a much smaller length scale.
Quantum computers
Entirely new approaches for computing exploit the laws of quantum mechanics for novel quantum computers, which enable the use of fast quantum algorithms. The Quantum computer has quantum bit memory space termed "Qubit" for several computations at the same time. In nanoelectronic devices, the qubit is encoded by the quantum state of one or more electrons spin. The spin are confined by either a semiconductor quantum dot or a dopant.
Radios
Nanoradios have been developed structured around
carbon nanotube
A carbon nanotube (CNT) is a tube made of carbon with a diameter in the nanometre range ( nanoscale). They are one of the allotropes of carbon. Two broad classes of carbon nanotubes are recognized:
* ''Single-walled carbon nanotubes'' (''S ...
s.
Energy production
Research is ongoing to use
nanowire
file:[email protected], upright=1.2, Crystalline 2×2-atom tin selenide nanowire grown inside a single-wall carbon nanotube (tube diameter ≈1 nm).
A nanowire is a nanostructure in the form of a wire with the diameter of the order of a nanometre ( ...
s and other nanostructured materials with the hope to create cheaper and more efficient
solar cell
A solar cell, also known as a photovoltaic cell (PV cell), is an electronic device that converts the energy of light directly into electricity by means of the photovoltaic effect. s than are possible with conventional planar silicon solar cells. It is believed that the invention of more efficient solar energy would have a great effect on satisfying global energy needs.
There is also research into energy production for devices that would operate ''
in vivo
Studies that are ''in vivo'' (Latin for "within the living"; often not italicized in English) are those in which the effects of various biological entities are tested on whole, living organisms or cells, usually animals, including humans, an ...
'', called bio-nano generators. A bio-nano generator is a
nanoscale
Nanotechnology is the manipulation of matter with at least one dimension sized from 1 to 100 nanometers (nm). At this scale, commonly known as the nanoscale, surface area and quantum mechanical effects become important in describing propertie ...
electrochemical
Electrochemistry is the branch of physical chemistry concerned with the relationship between electrical potential difference and identifiable chemical change. These reactions involve electrons moving via an electronically conducting phase (typi ...
device, like a
fuel cell
A fuel cell is an electrochemical cell that converts the chemical energy of a fuel (often hydrogen fuel, hydrogen) and an oxidizing agent (often oxygen) into electricity through a pair of redox reactions. Fuel cells are different from most bat ...
or
galvanic cell
A galvanic cell or voltaic cell, named after the scientists Luigi Galvani and Alessandro Volta, respectively, is an electrochemical cell in which an electric current is generated from spontaneous oxidation–reduction reactions. An example of a ...
, but drawing power from
blood glucose
The blood sugar level, blood sugar concentration, blood glucose level, or glycemia is the measure of glucose concentrated in the blood. The body tightly blood sugar regulation, regulates blood glucose levels as a part of metabolic homeostasis ...
in a living body, much the same as how the body generates
energy
Energy () is the physical quantity, quantitative physical property, property that is transferred to a physical body, body or to a physical system, recognizable in the performance of Work (thermodynamics), work and in the form of heat and l ...
from
food
Food is any substance consumed by an organism for Nutrient, nutritional support. Food is usually of plant, animal, or Fungus, fungal origin and contains essential nutrients such as carbohydrates, fats, protein (nutrient), proteins, vitamins, ...
. To achieve the effect, an
enzyme
An enzyme () is a protein that acts as a biological catalyst by accelerating chemical reactions. The molecules upon which enzymes may act are called substrate (chemistry), substrates, and the enzyme converts the substrates into different mol ...
is used that is capable of stripping glucose of its
electron
The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
s, freeing them for use in electrical devices. The average person's body could, theoretically, generate 100
watt
The watt (symbol: W) is the unit of Power (physics), power or radiant flux in the International System of Units (SI), equal to 1 joule per second or 1 kg⋅m2⋅s−3. It is used to quantification (science), quantify the rate of Work ...
s of
electricity
Electricity is the set of physical phenomena associated with the presence and motion of matter possessing an electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as described by Maxwel ...
(about 2000 food calories per day) using a bio-nano generator. However, this estimate is only true if all food was converted to electricity, and the human body needs some energy consistently, so possible power generated is likely much lower. The electricity generated by such a device could power devices embedded in the body (such as
pacemakers), or sugar-fed
nanorobots. Much of the research done on bio-nano generators is still experimental, with
Panasonic
is a Japanese multinational electronics manufacturer, headquartered in Kadoma, Osaka, Kadoma, Japan. It was founded in 1918 as in Fukushima-ku, Osaka, Fukushima by Kōnosuke Matsushita. The company was incorporated in 1935 and renamed and c ...
's Nanotechnology Research Laboratory among those at the forefront.
Medical diagnostics
There is great interest in constructing nanoelectronic devices that could detect the concentrations of
biomolecule
A biomolecule or biological molecule is loosely defined as a molecule produced by a living organism and essential to one or more typically biological processes. Biomolecules include large macromolecules such as proteins, carbohydrates, lipids ...
s in real time for use as medical diagnostics, thus falling into the category of
nanomedicine
Nanomedicine is the medical application of nanotechnology, translating historic nanoscience insights and inventions into practical application. Nanomedicine ranges from the medical applications of nanomaterials and biological devices, to n ...
.
A parallel line of research seeks to create nanoelectronic devices which could interact with single
cells for use in basic biological research.
These devices are called
nanosensors. Such miniaturization on nanoelectronics towards in vivo proteomic sensing should enable new approaches for health monitoring, surveillance, and defense technology.
References
Further reading
*
*
* https://link.springer.com/book/10.1007/978-3-031-64249-4/
Online course on ''Fundamentals of Electronics''by Supriyo Datta (2008)
Lessons from Nanoelectronics: A New Perspective on Transport (In 2 Parts) (2nd Edition)by Supriyo Datta (2018)
External links
IEEE Silicon Nanoelectronics WorkshopVirtual Institute of Spin ElectronicsSite on electronics of Single Walled Carbon nanotube at nanoscale - nanoelectronics*
ttps://www.understandingnano.com/nanotechnology-electronics.html Nanoelectronics at UnderstandingNano Web sitebr>
Nanoelectronics - PhysOrg
{{Authority control