16-bit Sample
   HOME

TheInfoList



OR:

In
signal processing Signal processing is an electrical engineering subfield that focuses on analyzing, modifying and synthesizing ''signals'', such as audio signal processing, sound, image processing, images, Scalar potential, potential fields, Seismic tomograph ...
, sampling is the reduction of a continuous-time signal to a
discrete-time signal In mathematical dynamics, discrete time and continuous time are two alternative frameworks within which variables that evolve over time are modeled. Discrete time Discrete time views values of variables as occurring at distinct, separate "poi ...
. A common example is the conversion of a
sound wave In physics, sound is a vibration that propagates as an acoustic wave through a transmission medium such as a gas, liquid or solid. In human physiology and psychology, sound is the ''reception'' of such waves and their ''perception'' by the ...
to a sequence of "samples". A sample is a value of the
signal A signal is both the process and the result of transmission of data over some media accomplished by embedding some variation. Signals are important in multiple subject fields including signal processing, information theory and biology. In ...
at a point in time and/or space; this definition differs from the term's usage in statistics, which refers to a set of such values. A sampler is a subsystem or operation that extracts samples from a
continuous signal In mathematical dynamics, discrete time and continuous time are two alternative frameworks within which variables that evolve over time are modeled. Discrete time Discrete time views values of variables as occurring at distinct, separate "poi ...
. A theoretical ideal sampler produces samples equivalent to the instantaneous value of the continuous signal at the desired points. The original signal can be reconstructed from a sequence of samples, up to the
Nyquist limit In signal processing, the Nyquist frequency (or folding frequency), named after Harry Nyquist, is a characteristic of a sampler, which converts a continuous function or signal into a discrete sequence. For a given sampling rate (''samples per ...
, by passing the sequence of samples through a
reconstruction filter In a mixed-signal system ( analog and digital), a reconstruction filter, sometimes called an anti-imaging filter, is used to construct a smooth analog signal from a digital input, as in the case of a digital to analog converter ( DAC) or other sam ...
.


Theory

Functions of space, time, or any other dimension can be sampled, and similarly in two or more dimensions. For functions that vary with time, let s(t) be a continuous function (or "signal") to be sampled, and let sampling be performed by measuring the value of the continuous function every T seconds, which is called the sampling interval or sampling period. Then the sampled function is given by the sequence: : s(nT), for integer values of n. The sampling frequency or sampling rate, f_s, is the average number of samples obtained in one second, thus f_s=1/T, with the unit ''samples per second'', sometimes referred to as
hertz The hertz (symbol: Hz) is the unit of frequency in the International System of Units (SI), often described as being equivalent to one event (or Cycle per second, cycle) per second. The hertz is an SI derived unit whose formal expression in ter ...
, for example 48 kHz is 48,000 ''samples per second''. Reconstructing a continuous function from samples is done by interpolation algorithms. The
Whittaker–Shannon interpolation formula The Whittaker–Shannon interpolation formula or sinc interpolation is a method to construct a continuous-time bandlimited function from a sequence of real numbers. The formula dates back to the works of E. Borel in 1898, and E. T. Whittaker ...
is mathematically equivalent to an ideal
low-pass filter A low-pass filter is a filter that passes signals with a frequency lower than a selected cutoff frequency and attenuates signals with frequencies higher than the cutoff frequency. The exact frequency response of the filter depends on the filt ...
whose input is a sequence of Dirac delta functions that are modulated (multiplied) by the sample values. When the time interval between adjacent samples is a constant (T), the sequence of delta functions is called a
Dirac comb In mathematics, a Dirac comb (also known as sha function, impulse train or sampling function) is a periodic function, periodic Function (mathematics), function with the formula \operatorname_(t) \ := \sum_^ \delta(t - k T) for some given perio ...
. Mathematically, the modulated Dirac comb is equivalent to the product of the comb function with s(t). That mathematical abstraction is sometimes referred to as ''impulse sampling''. Most sampled signals are not simply stored and reconstructed. The fidelity of a theoretical reconstruction is a common measure of the effectiveness of sampling. That fidelity is reduced when s(t) contains frequency components whose cycle length (period) is less than 2 sample intervals (see ''
Aliasing In signal processing and related disciplines, aliasing is a phenomenon that a reconstructed signal from samples of the original signal contains low frequency components that are not present in the original one. This is caused when, in the ori ...
''). The corresponding frequency limit, in ''cycles per second'' (
hertz The hertz (symbol: Hz) is the unit of frequency in the International System of Units (SI), often described as being equivalent to one event (or Cycle per second, cycle) per second. The hertz is an SI derived unit whose formal expression in ter ...
), is 0.5 cycle/sample × f_s samples/second = f_s/2, known as the
Nyquist frequency In signal processing, the Nyquist frequency (or folding frequency), named after Harry Nyquist, is a characteristic of a Sampling (signal processing), sampler, which converts a continuous function or signal into a discrete sequence. For a given S ...
of the sampler. Therefore, s(t) is usually the output of a
low-pass filter A low-pass filter is a filter that passes signals with a frequency lower than a selected cutoff frequency and attenuates signals with frequencies higher than the cutoff frequency. The exact frequency response of the filter depends on the filt ...
, functionally known as an ''anti-aliasing filter''. Without an anti-aliasing filter, frequencies higher than the Nyquist frequency will influence the samples in a way that is misinterpreted by the interpolation process.


Practical considerations

In practice, the continuous signal is sampled using an
analog-to-digital converter In electronics, an analog-to-digital converter (ADC, A/D, or A-to-D) is a system that converts an analog signal, such as a sound picked up by a microphone or light entering a digital camera, into a Digital signal (signal processing), digi ...
(ADC), a device with various physical limitations. This results in deviations from the theoretically perfect reconstruction, collectively referred to as
distortion In signal processing, distortion is the alteration of the original shape (or other characteristic) of a signal. In communications and electronics it means the alteration of the waveform of an information-bearing signal, such as an audio signal ...
. Various types of distortion can occur, including: *
Aliasing In signal processing and related disciplines, aliasing is a phenomenon that a reconstructed signal from samples of the original signal contains low frequency components that are not present in the original one. This is caused when, in the ori ...
. Some amount of aliasing is inevitable because only theoretical, infinitely long, functions can have no frequency content above the Nyquist frequency. Aliasing can be made
arbitrarily small In mathematics, the phrases arbitrarily large, arbitrarily small and arbitrarily long are used in statements to make clear the fact that an object is large, small, or long with little limitation or restraint, respectively. The use of "arbitrarily" o ...
by using a
sufficiently large In the mathematical areas of number theory and analysis, an infinite sequence or a function is said to eventually have a certain property, if it does not have the said property across all its ordered instances, but will after some instances have ...
order of the anti-aliasing filter. * Aperture error results from the fact that the sample is obtained as a time average within a sampling region, rather than just being equal to the signal value at the sampling instant. In a
capacitor In electrical engineering, a capacitor is a device that stores electrical energy by accumulating electric charges on two closely spaced surfaces that are insulated from each other. The capacitor was originally known as the condenser, a term st ...
-based
sample and hold In electronics, a sample and hold (also known as sample and follow) circuit is an analog device that samples (captures, takes) the voltage of a continuously varying analog signal and holds (locks, freezes) its value at a constant level for a ...
circuit, aperture errors are introduced by multiple mechanisms. For example, the capacitor cannot instantly track the input signal and the capacitor can not instantly be isolated from the input signal. *
Jitter In electronics and telecommunications, jitter is the deviation from true periodicity of a presumably periodic signal, often in relation to a reference clock signal. In clock recovery applications it is called timing jitter. Jitter is a signifi ...
or deviation from the precise sample timing intervals. *
Noise Noise is sound, chiefly unwanted, unintentional, or harmful sound considered unpleasant, loud, or disruptive to mental or hearing faculties. From a physics standpoint, there is no distinction between noise and desired sound, as both are vibrat ...
, including thermal sensor noise,
analog circuit Analogue electronics () are electronic systems with a continuously variable signal, in contrast to digital electronics where signals usually take only two levels. The term ''analogue'' describes the proportional relationship between a signal ...
noise, etc.. *
Slew rate In electronics and electromagnetics, slew rate is defined as the change of voltage or current, or any other electrical or electromagnetic quantity, per unit of time. Expressed in SI units, the unit of measurement is given as the change per seco ...
limit error, caused by the inability of the ADC input value to change sufficiently rapidly. * Quantization as a consequence of the finite precision of words that represent the converted values. * Error due to other
non-linear In mathematics and science, a nonlinear system (or a non-linear system) is a system in which the change of the output is not proportional to the change of the input. Nonlinear problems are of interest to engineers, biologists, physicists, mathe ...
effects of the mapping of input voltage to converted output value (in addition to the effects of quantization). Although the use of
oversampling In signal processing, oversampling is the process of sampling (signal processing), sampling a signal at a sampling frequency significantly higher than the Nyquist rate. Theoretically, a bandwidth-limited signal can be perfectly reconstructed if ...
can completely eliminate aperture error and aliasing by shifting them out of the passband, this technique cannot be practically used above a few GHz, and may be prohibitively expensive at much lower frequencies. Furthermore, while oversampling can reduce quantization error and non-linearity, it cannot eliminate these entirely. Consequently, practical ADCs at audio frequencies typically do not exhibit aliasing, aperture error, and are not limited by quantization error. Instead, analog noise dominates. At RF and microwave frequencies where oversampling is impractical and filters are expensive, aperture error, quantization error and aliasing can be significant limitations. Jitter, noise, and quantization are often analyzed by modeling them as random errors added to the sample values. Integration and zero-order hold effects can be analyzed as a form of
low-pass filter A low-pass filter is a filter that passes signals with a frequency lower than a selected cutoff frequency and attenuates signals with frequencies higher than the cutoff frequency. The exact frequency response of the filter depends on the filt ...
ing. The non-linearities of either ADC or DAC are analyzed by replacing the ideal
linear function In mathematics, the term linear function refers to two distinct but related notions: * In calculus and related areas, a linear function is a function whose graph is a straight line, that is, a polynomial function of degree zero or one. For di ...
mapping with a proposed
nonlinear function In mathematics and science, a nonlinear system (or a non-linear system) is a system in which the change of the output is not proportional to the change of the input. Nonlinear problems are of interest to engineers, biologists, physicists, mathem ...
.


Applications


Audio sampling

Digital audio Digital audio is a representation of sound recorded in, or converted into, digital signal (signal processing), digital form. In digital audio, the sound wave of the audio signal is typically encoded as numerical sampling (signal processing), ...
uses
pulse-code modulation Pulse-code modulation (PCM) is a method used to digitally represent analog signals. It is the standard form of digital audio in computers, compact discs, digital telephony and other digital audio applications. In a PCM stream, the amplitud ...
(PCM) and digital signals for sound reproduction. This includes analog-to-digital conversion (ADC), digital-to-analog conversion (DAC), storage, and transmission. In effect, the system commonly referred to as digital is in fact a discrete-time, discrete-level analog of a previous electrical analog. While modern systems can be quite subtle in their methods, the primary usefulness of a digital system is the ability to store, retrieve and transmit signals without any loss of quality. When it is necessary to capture audio covering the entire 20–20,000 Hz range of
human hearing Hearing, or auditory perception, is the ability to perceive sounds through an organ, such as an ear, by detecting vibrations as periodic changes in the pressure of a surrounding medium. The academic field concerned with hearing is auditory sc ...
such as when recording music or many types of acoustic events, audio waveforms are typically sampled at 44.1 kHz ( CD), 48 kHz, 88.2 kHz, or 96 kHz. The approximately double-rate requirement is a consequence of the
Nyquist theorem Nyquist may refer to: * Nyquist (surname) * Nyquist (horse), winner of the 2016 Kentucky Derby * Nyquist (programming language), computer programming language for sound synthesis and music composition See also *Johnson–Nyquist noise, thermal noi ...
. Sampling rates higher than about 50 kHz to 60 kHz cannot supply more usable information for human listeners. Early
professional audio Professional audio, abbreviated as pro audio, refers to both an activity and a category of high-quality, studio-grade audio equipment. Typically it encompasses sound recording, sound reinforcement system setup and audio mixing, and studio mus ...
equipment manufacturers chose sampling rates in the region of 40 to 50 kHz for this reason. There has been an industry trend towards sampling rates well beyond the basic requirements: such as 96 kHz and even 192 kHz Even though
ultrasonic Ultrasound is sound with frequencies greater than 20 kilohertz. This frequency is the approximate upper audible limit of human hearing in healthy young adults. The physical principles of acoustic waves apply to any frequency range, includi ...
frequencies are inaudible to humans, recording and mixing at higher sampling rates is effective in eliminating the distortion that can be caused by foldback aliasing. Conversely, ultrasonic sounds may interact with and modulate the audible part of the frequency spectrum (
intermodulation distortion Intermodulation (IM) or intermodulation distortion (IMD) is the amplitude modulation of signals containing two or more different frequencies, caused by nonlinearities or time variance in a system. The intermodulation between frequency compo ...
), ''degrading'' the fidelity. One advantage of higher sampling rates is that they can relax the low-pass filter design requirements for ADCs and DACs, but with modern oversampling delta-sigma-converters this advantage is less important. The
Audio Engineering Society The Audio Engineering Society (AES) is a professional body for engineers, scientists, other individuals with an interest or involvement in the professional audio industry. The membership largely comprises engineers developing devices or product ...
recommends 48 kHz sampling rate for most applications but gives recognition to 44.1 kHz for CD and other consumer uses, 32 kHz for transmission-related applications, and 96 kHz for higher bandwidth or relaxed
anti-aliasing filter An anti-aliasing filter (AAF) is a filter used before a signal sampler to restrict the bandwidth of a signal to satisfy the Nyquist–Shannon sampling theorem over the band of interest. Since the theorem states that unambiguous reconstructi ...
ing. Both Lavry Engineering and J. Robert Stuart state that the ideal sampling rate would be about 60 kHz, but since this is not a standard frequency, recommend 88.2 or 96 kHz for recording purposes. A more complete list of common audio sample rates is:


Bit depth

Audio is typically recorded at 8-, 16-, and 24-bit depth; which yield a theoretical maximum
signal-to-quantization-noise ratio Signal-to-quantization-noise ratio (SQNR or SNqR) is widely used quality measure in analysing digitizing schemes such as pulse-code modulation (PCM). The SQNR reflects the relationship between the maximum nominal signal strength and the quanti ...
(SQNR) for a pure
sine wave A sine wave, sinusoidal wave, or sinusoid (symbol: ∿) is a periodic function, periodic wave whose waveform (shape) is the trigonometric function, trigonometric sine, sine function. In mechanics, as a linear motion over time, this is ''simple ...
of, approximately; 49.93  dB, 98.09 dB, and 122.17 dB. CD quality audio uses 16-bit samples.
Thermal noise A thermal column (or thermal) is a rising mass of buoyant air, a convective current in the atmosphere, that transfers heat energy vertically. Thermals are created by the uneven heating of Earth's surface from solar radiation, and are an example ...
limits the true number of bits that can be used in quantization. Few analog systems have signal to noise ratios (SNR) exceeding 120 dB. However,
digital signal processing Digital signal processing (DSP) is the use of digital processing, such as by computers or more specialized digital signal processors, to perform a wide variety of signal processing operations. The digital signals processed in this manner are a ...
operations can have very high dynamic range, consequently it is common to perform mixing and mastering operations at 32-bit precision and then convert to 16- or 24-bit for distribution.


Speech sampling

Speech signals, i.e., signals intended to carry only human
speech Speech is the use of the human voice as a medium for language. Spoken language combines vowel and consonant sounds to form units of meaning like words, which belong to a language's lexicon. There are many different intentional speech acts, suc ...
, can usually be sampled at a much lower rate. For most
phoneme A phoneme () is any set of similar Phone (phonetics), speech sounds that are perceptually regarded by the speakers of a language as a single basic sound—a smallest possible Phonetics, phonetic unit—that helps distinguish one word fr ...
s, almost all of the energy is contained in the 100 Hz – 4 kHz range, allowing a sampling rate of 8 kHz. This is the sampling rate used by nearly all
telephony Telephony ( ) is the field of technology involving the development, application, and deployment of telecommunications services for the purpose of electronic transmission of voice, fax, or data, between distant parties. The history of telephony is ...
systems, which use the G.711 sampling and quantization specifications.


Video sampling

Standard-definition television Standard-definition television (SDTV; also standard definition or SD) is a television system that uses a resolution that is not considered to be either high or enhanced definition. ''Standard'' refers to offering a similar resolution to the ...
(SDTV) uses either 720 by 480
pixels In digital imaging, a pixel (abbreviated px), pel, or picture element is the smallest addressable element in a raster image, or the smallest addressable element in a dot matrix display device. In most digital display devices, pixels are the sma ...
(US
NTSC NTSC (from National Television System Committee) is the first American standard for analog television, published and adopted in 1941. In 1961, it was assigned the designation System M. It is also known as EIA standard 170. In 1953, a second ...
525-line) or 720 by 576 pixels (UK
PAL Phase Alternating Line (PAL) is a color encoding system for analog television. It was one of three major analogue colour television standards, the others being NTSC and SECAM. In most countries it was broadcast at 625 lines, 50 fields (25 ...
625-line) for the visible picture area.
High-definition television High-definition television (HDTV) describes a television or video system which provides a substantially higher image resolution than the previous generation of technologies. The term has been used since at least 1933; in more recent times, it ref ...
(HDTV) uses
720p 720p (720 lines progressive) is a progressive HD signal format with 720 horizontal lines/1280 columns and an aspect ratio (AR) of 16:9, normally known as widescreen HD (1.78:1). All major HD broadcasting standards (such as SMPTE 292M) includ ...
(progressive),
1080i In high-definition television (HDTV) and video display technology, 1080i is a video display format with 1080 lines of vertical resolution and Interlaced video, interlaced scanning method. This format was once a standard in HDTV. It was particular ...
(interlaced), and
1080p 1080p (1920 × 1080 progressively displayed pixels; also known as Full HD or FHD, and BT.709) is a set of HDTV high-definition video modes characterized by 1,920 pixels displayed across the screen horizontally and 1,080 pixels down the sc ...
(progressive, also known as Full-HD). In
digital video Digital video is an electronic representation of moving visual images (video) in the form of encoded digital data. This is in contrast to analog video, which represents moving visual images in the form of analog signals. Digital video comprises ...
, the temporal sampling rate is defined as the
frame rate Frame rate, most commonly expressed in frame/s, or FPS, is typically the frequency (rate) at which consecutive images (Film frame, frames) are captured or displayed. This definition applies to film and video cameras, computer animation, and moti ...
or rather the
field rate Field may refer to: Expanses of open ground * Field (agriculture), an area of land used for agricultural purposes * Airfield, an aerodrome that lacks the infrastructure of an airport * Battlefield * Lawn, an area of mowed grass * Meadow, a gras ...
rather than the notional
pixel clock In digital imaging, a pixel (abbreviated px), pel, or picture element is the smallest addressable element in a raster image, or the smallest addressable element in a dot matrix display device. In most digital display devices, pixels are the sma ...
. The image sampling frequency is the repetition rate of the sensor integration period. Since the integration period may be significantly shorter than the time between repetitions, the sampling frequency can be different from the inverse of the sample time: * 50 Hz –
PAL Phase Alternating Line (PAL) is a color encoding system for analog television. It was one of three major analogue colour television standards, the others being NTSC and SECAM. In most countries it was broadcast at 625 lines, 50 fields (25 ...
video * 60 / 1.001 Hz ~= 59.94 Hz –
NTSC NTSC (from National Television System Committee) is the first American standard for analog television, published and adopted in 1941. In 1961, it was assigned the designation System M. It is also known as EIA standard 170. In 1953, a second ...
video Video
digital-to-analog converter In electronics, a digital-to-analog converter (DAC, D/A, D2A, or D-to-A) is a system that converts a digital signal into an analog signal. An analog-to-digital converter (ADC) performs the reverse function. DACs are commonly used in musi ...
s operate in the megahertz range (from ~3 MHz for low quality composite video scalers in early game consoles, to 250 MHz or more for the highest-resolution VGA output). When analog video is converted to
digital video Digital video is an electronic representation of moving visual images (video) in the form of encoded digital data. This is in contrast to analog video, which represents moving visual images in the form of analog signals. Digital video comprises ...
, a different sampling process occurs, this time at the pixel frequency, corresponding to a spatial sampling rate along
scan line A scan line (also scanline) is one line, or row, in a raster scanning pattern, such as a line of video on a cathode-ray tube (CRT) display of a television set or computer monitor. On CRT screens the horizontal scan lines are visually discernib ...
s. A common pixel sampling rate is: * 13.5 MHz –
CCIR 601 ITU-R Recommendation BT.601, more commonly known by the abbreviations Rec. 601 or BT.601 (or its former name CCIR 601), is a standard originally issued in 1982 by the Comité consultatif international pour la radio, CCIR (an organizati ...
, D1 video Spatial sampling in the other direction is determined by the spacing of scan lines in the
raster file:Rgb-raster-image.svg, upright=1, The Smiley, smiley face in the top left corner is a raster image. When enlarged, individual pixels appear as squares. Enlarging further, each pixel can be analyzed, with their colors constructed through comb ...
. The sampling rates and resolutions in both spatial directions can be measured in units of lines per picture height. Spatial
aliasing In signal processing and related disciplines, aliasing is a phenomenon that a reconstructed signal from samples of the original signal contains low frequency components that are not present in the original one. This is caused when, in the ori ...
of high-frequency luma or chroma video components shows up as a
moiré pattern In mathematics, physics, and art, moiré patterns ( , , ) or moiré fringes are large-scale wave interference, interference patterns that can be produced when a partially opaque grating, ruled pattern with transparent gaps is overlaid on ano ...
.


3D sampling

The process of
volume rendering In scientific visualization and computer graphics, volume rendering is a set of techniques used to display a 2D projection of a 3D discretely sampled data set, typically a 3D scalar field. A typical 3D data set is a group of 2D slice image ...
samples a 3D grid of
voxel In computing, a voxel is a representation of a value on a three-dimensional regular grid, akin to the two-dimensional pixel. Voxels are frequently used in the Data visualization, visualization and analysis of medical imaging, medical and scient ...
s to produce 3D renderings of sliced (tomographic) data. The 3D grid is assumed to represent a continuous region of 3D space. Volume rendering is common in medical imaging,
X-ray computed tomography An X-ray (also known in many languages as Röntgen radiation) is a form of high-energy electromagnetic radiation with a wavelength shorter than those of ultraviolet rays and longer than those of gamma rays. Roughly, X-rays have a wavelength ran ...
(CT/CAT),
magnetic resonance imaging Magnetic resonance imaging (MRI) is a medical imaging technique used in radiology to generate pictures of the anatomy and the physiological processes inside the body. MRI scanners use strong magnetic fields, magnetic field gradients, and ...
(MRI),
positron emission tomography Positron emission tomography (PET) is a functional imaging technique that uses radioactive substances known as radiotracers to visualize and measure changes in metabolic processes, and in other physiological activities including blood flow, r ...
(PET) are some examples. It is also used for
seismic tomography Seismic tomography or seismotomography is a technique for imaging the subsurface of the Earth using seismic waves. The properties of seismic waves are modified by the material through which they travel. By comparing the differences in seismic waves ...
and other applications.


Undersampling

When a
bandpass A band-pass filter or bandpass filter (BPF) is a device that passes frequencies within a certain range and rejects ( attenuates) frequencies outside that range. It is the inverse of a '' band-stop filter''. Description In electronics and s ...
signal is sampled slower than its
Nyquist rate In signal processing, the Nyquist rate, named after Harry Nyquist, is a value equal to twice the highest frequency ( bandwidth) of a given function or signal. It has units of samples per unit time, conventionally expressed as samples per se ...
, the samples are indistinguishable from samples of a low-frequency alias of the high-frequency signal. That is often done purposefully in such a way that the lowest-frequency alias satisfies the Nyquist criterion, because the bandpass signal is still uniquely represented and recoverable. Such
undersampling In signal processing, undersampling or bandpass sampling is a technique where one samples a bandpass-filtered signal at a sample rate below its Nyquist rate (twice the upper cutoff frequency), but is still able to reconstruct the signal. Whe ...
is also known as ''bandpass sampling'', ''harmonic sampling'', ''IF sampling'', and ''direct IF to digital conversion.''


Oversampling

Oversampling is used in most modern analog-to-digital converters to reduce the distortion introduced by practical
digital-to-analog converter In electronics, a digital-to-analog converter (DAC, D/A, D2A, or D-to-A) is a system that converts a digital signal into an analog signal. An analog-to-digital converter (ADC) performs the reverse function. DACs are commonly used in musi ...
s, such as a
zero-order hold The zero-order hold (ZOH) is a mathematical model of the practical signal reconstruction done by a conventional digital-to-analog converter (DAC). That is, it describes the effect of converting a discrete-time signal to a continuous-time signa ...
instead of idealizations like the
Whittaker–Shannon interpolation formula The Whittaker–Shannon interpolation formula or sinc interpolation is a method to construct a continuous-time bandlimited function from a sequence of real numbers. The formula dates back to the works of E. Borel in 1898, and E. T. Whittaker ...
.


Complex sampling

Complex sampling (or I/Q sampling) is the simultaneous sampling of two different, but related, waveforms, resulting in pairs of samples that are subsequently treated as
complex numbers In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form a ...
. When one waveform, \hat s(t), is the
Hilbert transform In mathematics and signal processing, the Hilbert transform is a specific singular integral that takes a function, of a real variable and produces another function of a real variable . The Hilbert transform is given by the Cauchy principal value ...
of the other waveform, s(t), the complex-valued function, s_a(t)\triangleq s(t)+i\cdot\hat s(t), is called an
analytic signal In mathematics and signal processing, an analytic signal is a complex-valued function that has no negative frequency components.  The real and imaginary parts of an analytic signal are real-valued functions related to each other by the Hilb ...
, whose Fourier transform is zero for all negative values of frequency. In that case, the
Nyquist rate In signal processing, the Nyquist rate, named after Harry Nyquist, is a value equal to twice the highest frequency ( bandwidth) of a given function or signal. It has units of samples per unit time, conventionally expressed as samples per se ...
for a waveform with no frequencies ≥ ''B'' can be reduced to just ''B'' (complex samples/sec), instead of 2B (real samples/sec). More apparently, the equivalent baseband waveform, s_a(t)\cdot e^, also has a Nyquist rate of B, because all of its non-zero frequency content is shifted into the interval B/2,B/2/math>. Although complex-valued samples can be obtained as described above, they are also created by manipulating samples of a real-valued waveform. For instance, the equivalent baseband waveform can be created without explicitly computing \hat s(t), by processing the product sequence, \left (nT)\cdot e^\right/math>, through a digital low-pass filter whose cutoff frequency is B/2. Computing only every other sample of the output sequence reduces the sample rate commensurate with the reduced Nyquist rate. The result is half as many complex-valued samples as the original number of real samples. No information is lost, and the original s(t) waveform can be recovered, if necessary.


See also

* Crystal oscillator frequencies *
Downsampling In digital signal processing, downsampling, compression, and decimation are terms associated with the process of ''resampling'' in a multi-rate digital signal processing system. Both ''downsampling'' and ''decimation'' can be synonymous with ''co ...
*
Upsampling In digital signal processing, upsampling, expansion, and interpolation are terms associated with the process of sample rate conversion, resampling in a multi-rate digital signal processing system. ''Upsampling'' can be synonymous with ''expansion'' ...
*
Multidimensional sampling In digital signal processing, multidimensional sampling is the process of converting a function of a multidimensional variable into a discrete collection of values of the function measured on a discrete set of points. This article presents the basic ...
*
In-phase and quadrature components A sinusoid with modulation can be decomposed into, or synthesized from, two amplitude-modulated sinusoids that are in quadrature phase, i.e., with a phase offset of one-quarter cycle (90 degrees or /2 radians). All three sinusoids have the sam ...
and I/Q data *
Sample rate conversion Sample-rate conversion, sampling-frequency conversion or resampling is the process of changing the sampling rate or sampling frequency of a discrete signal to obtain a new discrete representation of the underlying continuous signal. Application a ...
*
Digitizing Digitization is the process of converting information into a digital (i.e. computer-readable) format.Collins Dictionary. (n.d.). Definition of 'digitize'. Retrieved December 15, 2021, from https://www.collinsdictionary.com/dictionary/english ...
*
Sample and hold In electronics, a sample and hold (also known as sample and follow) circuit is an analog device that samples (captures, takes) the voltage of a continuously varying analog signal and holds (locks, freezes) its value at a constant level for a ...
*
Beta encoder A beta encoder is an analog-to-digital conversion (A/D) system in which a real number in the unit interval is represented by a finite representation of a sequence in ''base beta'', with beta being a real number between 1 and 2. Beta encoders are an ...
* Kell factor *
Bit rate In telecommunications and computing, bit rate (bitrate or as a variable ''R'') is the number of bits that are conveyed or processed per unit of time. The bit rate is expressed in the unit bit per second (symbol: bit/s), often in conjunction ...
* Normalized frequency


Notes


References


Further reading

* Matt Pharr, Wenzel Jakob and Greg Humphreys, ''Physically Based Rendering: From Theory to Implementation, 3rd ed.'', Morgan Kaufmann, November 2016. . The chapter on sampling
available online
is nicely written with diagrams, core theory and code sample.


External links


Journal devoted to Sampling Theory

I/Q Data for Dummies
a page trying to answer the question ''Why I/Q Data?''
Sampling of analog signals
an interactive presentation in a web-demo at the Institute of Telecommunications, University of Stuttgart {{DEFAULTSORT:Sampling Rate Digital signal processing Signal processing