â„­
   HOME

TheInfoList



OR:

In
set theory Set theory is the branch of mathematical logic that studies Set (mathematics), sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory – as a branch of mathema ...
, the cardinality of the continuum is the
cardinality The thumb is the first digit of the hand, next to the index finger. When a person is standing in the medical anatomical position (where the palm is facing to the front), the thumb is the outermost digit. The Medical Latin English noun for thum ...
or "size" of the
set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
of
real numbers In mathematics, a real number is a number that can be used to measurement, measure a continuous variable, continuous one-dimensional quantity such as a time, duration or temperature. Here, ''continuous'' means that pairs of values can have arbi ...
\mathbb R, sometimes called the continuum. It is an infinite
cardinal number In mathematics, a cardinal number, or cardinal for short, is what is commonly called the number of elements of a set. In the case of a finite set, its cardinal number, or cardinality is therefore a natural number. For dealing with the cas ...
and is denoted by \bold\mathfrak c (lowercase
Fraktur Fraktur () is a calligraphic hand of the Latin alphabet and any of several blackletter typefaces derived from this hand. It is designed such that the beginnings and ends of the individual strokes that make up each letter will be clearly vis ...
"c") or \bold, \bold\mathbb R\bold, . The real numbers \mathbb R are more numerous than the
natural numbers In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positiv ...
\mathbb N. Moreover, \mathbb R has the same number of elements as the
power set In mathematics, the power set (or powerset) of a set is the set of all subsets of , including the empty set and itself. In axiomatic set theory (as developed, for example, in the ZFC axioms), the existence of the power set of any set is po ...
of \mathbb N. Symbolically, if the cardinality of \mathbb N is denoted as \aleph_0, the cardinality of the continuum is This was proven by
Georg Cantor Georg Ferdinand Ludwig Philipp Cantor ( ; ;  â€“ 6 January 1918) was a mathematician who played a pivotal role in the creation of set theory, which has become a foundations of mathematics, fundamental theory in mathematics. Cantor establi ...
in his uncountability proof of 1874, part of his groundbreaking study of different infinities. The inequality was later stated more simply in his
diagonal argument Diagonal argument can refer to: * Diagonal argument (proof technique), proof techniques used in mathematics. A diagonal argument, in mathematics, is a technique employed in the proofs of the following theorems: *Cantor's diagonal argument (the ea ...
in 1891. Cantor defined cardinality in terms of
bijective function In mathematics, a bijection, bijective function, or one-to-one correspondence is a function between two sets such that each element of the second set (the codomain) is the image of exactly one element of the first set (the domain). Equivale ...
s: two sets have the same cardinality if, and only if, there exists a bijective function between them. Between any two real numbers ''a'' < ''b'', no matter how close they are to each other, there are always infinitely many other real numbers, and Cantor showed that they are as many as those contained in the whole set of real numbers. In other words, the
open interval In mathematics, a real interval is the set (mathematics), set of all real numbers lying between two fixed endpoints with no "gaps". Each endpoint is either a real number or positive or negative infinity, indicating the interval extends without ...
(''a'',''b'') is
equinumerous In mathematics, two sets or classes ''A'' and ''B'' are equinumerous if there exists a one-to-one correspondence (or bijection) between them, that is, if there exists a function from ''A'' to ''B'' such that for every element ''y'' of ''B'', ...
with \mathbb R, as well as with several other infinite sets, such as any ''n''-dimensional
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
\mathbb R^n (see space filling curve). That is, The smallest infinite cardinal number is \aleph_0 (
aleph-null In mathematics, particularly in set theory, the aleph numbers are a sequence of numbers used to represent the cardinality (or size) of infinite sets. They were introduced by the mathematician Georg Cantor and are named after the symbol he used ...
). The second smallest is \aleph_1 (
aleph-one In mathematics, particularly in set theory, the aleph numbers are a sequence of numbers used to represent the cardinality (or size) of infinite sets. They were introduced by the mathematician Georg Cantor and are named after the symbol he used t ...
). The
continuum hypothesis In mathematics, specifically set theory, the continuum hypothesis (abbreviated CH) is a hypothesis about the possible sizes of infinite sets. It states: Or equivalently: In Zermelo–Fraenkel set theory with the axiom of choice (ZFC), this ...
, which asserts that there are no sets whose cardinality is strictly between \aleph_0 and , means that \mathfrak c = \aleph_1. The truth or falsity of this hypothesis is undecidable and cannot be proven within the widely used
Zermelo–Fraenkel set theory In set theory, Zermelo–Fraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes suc ...
with axiom of choice (ZFC).


Properties


Uncountability

Georg Cantor Georg Ferdinand Ludwig Philipp Cantor ( ; ;  â€“ 6 January 1918) was a mathematician who played a pivotal role in the creation of set theory, which has become a foundations of mathematics, fundamental theory in mathematics. Cantor establi ...
introduced the concept of
cardinality The thumb is the first digit of the hand, next to the index finger. When a person is standing in the medical anatomical position (where the palm is facing to the front), the thumb is the outermost digit. The Medical Latin English noun for thum ...
to compare the sizes of infinite sets. He famously showed that the set of real numbers is
uncountably infinite In mathematics, an uncountable set, informally, is an infinite set that contains too many elements to be countable. The uncountability of a set is closely related to its cardinal number: a set is uncountable if its cardinal number is larger tha ...
. That is, is strictly greater than the cardinality of the
natural numbers In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positiv ...
, \aleph_0: In practice, this means that there are strictly more real numbers than there are integers. Cantor proved this statement in several different ways. For more information on this topic, see
Cantor's first uncountability proof Cantor's first set theory article contains Georg Cantor's first theorems of transfinite set theory, which studies infinite sets and their properties. One of these theorems is his "revolutionary discovery" that the set of all real numbers is unco ...
and
Cantor's diagonal argument Cantor's diagonal argument (among various similar namesthe diagonalisation argument, the diagonal slash argument, the anti-diagonal argument, the diagonal method, and Cantor's diagonalization proof) is a mathematical proof that there are infin ...
.


Cardinal equalities

A variation of Cantor's diagonal argument can be used to prove
Cantor's theorem In mathematical set theory, Cantor's theorem is a fundamental result which states that, for any Set (mathematics), set A, the set of all subsets of A, known as the power set of A, has a strictly greater cardinality than A itself. For finite s ...
, which states that the cardinality of any set is strictly less than that of its
power set In mathematics, the power set (or powerset) of a set is the set of all subsets of , including the empty set and itself. In axiomatic set theory (as developed, for example, in the ZFC axioms), the existence of the power set of any set is po ...
. That is, , A, < 2^ (and so that the power set \wp(\mathbb N) of the
natural number In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive in ...
s \mathbb N is uncountable). In fact, the cardinality of \wp(\mathbb N), by definition 2^, is equal to . This can be shown by providing one-to-one mappings in both directions between subsets of a countably infinite set and real numbers, and applying the Cantor–Bernstein–Schroeder theorem according to which two sets with one-to-one mappings in both directions have the same cardinality. In one direction, reals can be equated with
Dedekind cut In mathematics, Dedekind cuts, named after German mathematician Richard Dedekind (but previously considered by Joseph Bertrand), are а method of construction of the real numbers from the rational numbers. A Dedekind cut is a partition of a set, ...
s, sets of rational numbers, or with their
binary expansion A binary number is a number expressed in the base-2 numeral system or binary numeral system, a method for representing numbers that uses only two symbols for the natural numbers: typically "0" ( zero) and "1" ( one). A ''binary number'' may als ...
s. In the other direction, the binary expansions of numbers in the half-open interval [0,1), viewed as sets of positions where the expansion is one, almost give a one-to-one mapping from subsets of a countable set (the set of positions in the expansions) to real numbers, but it fails to be one-to-one for numbers with terminating binary expansions, which can also be represented by a non-terminating expansion that ends in a repeating sequence of 1s. This can be made into a one-to-one mapping by that adds one to the non-terminating repeating-1 expansions, mapping them into [1,2). Thus, we conclude that The cardinal equality \mathfrak^2 = \mathfrak can be demonstrated using cardinal arithmetic: By using the rules of cardinal arithmetic, one can also show that where ''n'' is any finite cardinal ≥ 2 and where 2 ^ is the cardinality of the power set of R, and 2 ^ > \mathfrak c .


Alternative explanation for

Every real number has at least one infinite
decimal expansion A decimal representation of a non-negative real number is its expression as a sequence of symbols consisting of decimal digits traditionally written with a single separator: r = b_k b_\cdots b_0.a_1a_2\cdots Here is the decimal separator ...
. For example, (This is true even in the case the expansion repeats, as in the first two examples.) In any given case, the number of decimal places is
countable In mathematics, a Set (mathematics), set is countable if either it is finite set, finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function fro ...
since they can be put into a
one-to-one correspondence In mathematics, a bijection, bijective function, or one-to-one correspondence is a function between two sets such that each element of the second set (the codomain) is the image of exactly one element of the first set (the domain). Equivale ...
with the set of natural numbers \mathbb. This makes it sensible to talk about, say, the first, the one-hundredth, or the millionth decimal place of π. Since the natural numbers have cardinality \aleph_0, each real number has \aleph_0 digits in its expansion. Since each real number can be broken into an integer part and a decimal fraction, we get: where we used the fact that On the other hand, if we map 2 = \ to \ and consider that decimal fractions containing only 3 or 7 are only a part of the real numbers, then we get and thus


Beth numbers

The sequence of beth numbers is defined by setting \beth_0 = \aleph_0 and \beth_ = 2^. So is the second beth number, beth-one: The third beth number, beth-two, is the cardinality of the power set of \mathbb (i.e. the set of all subsets of the
real line A number line is a graphical representation of a straight line that serves as spatial representation of numbers, usually graduated like a ruler with a particular origin (geometry), origin point representing the number zero and evenly spaced mark ...
):


The continuum hypothesis

The continuum hypothesis asserts that is also the second
aleph number In mathematics, particularly in set theory, the aleph numbers are a sequence of numbers used to represent the cardinality (or size) of infinite sets. They were introduced by the mathematician Georg Cantor and are named after the symbol he used t ...
, \aleph_1. In other words, the continuum hypothesis states that there is no set A whose cardinality lies strictly between \aleph_0 and This statement is now known to be independent of the axioms of
Zermelo–Fraenkel set theory In set theory, Zermelo–Fraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes suc ...
with the axiom of choice (ZFC), as shown by
Kurt Gödel Kurt Friedrich Gödel ( ; ; April 28, 1906 â€“ January 14, 1978) was a logician, mathematician, and philosopher. Considered along with Aristotle and Gottlob Frege to be one of the most significant logicians in history, Gödel profoundly ...
and
Paul Cohen Paul Joseph Cohen (April 2, 1934 – March 23, 2007) was an American mathematician, best known for his proofs that the continuum hypothesis and the axiom of choice are independent from Zermelo–Fraenkel set theory, for which he was awarded a F ...
. That is, both the hypothesis and its negation are consistent with these axioms. In fact, for every nonzero
natural number In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive in ...
''n'', the equality = \aleph_n is independent of ZFC (case n=1 being the continuum hypothesis). The same is true for most other alephs, although in some cases, equality can be ruled out by König's theorem on the grounds of
cofinality In mathematics, especially in order theory, the cofinality cf(''A'') of a partially ordered set ''A'' is the least of the cardinalities of the cofinal subsets of ''A''. Formally, :\operatorname(A) = \inf \ This definition of cofinality relies o ...
(e.g. \mathfrak\neq\aleph_\omega). In particular, \mathfrak could be either \aleph_1 or \aleph_, where \omega_1 is the
first uncountable ordinal In mathematics, the first uncountable ordinal, traditionally denoted by \omega_1 or sometimes by \Omega, is the smallest ordinal number that, considered as a set, is uncountable. It is the supremum (least upper bound) of all countable ordinals. Whe ...
, so it could be either a
successor cardinal In set theory, one can define a successor operation on cardinal numbers in a similar way to the successor operation on the ordinal numbers. The cardinal successor coincides with the ordinal successor for finite cardinals, but in the infinite case th ...
or a
limit cardinal In mathematics, limit cardinals are certain cardinal numbers. A cardinal number ''λ'' is a weak limit cardinal if ''λ'' is neither a successor cardinal nor zero. This means that one cannot "reach" ''λ'' from another cardinal by repeated success ...
, and either a
regular cardinal In set theory, a regular cardinal is a cardinal number that is equal to its own cofinality. More explicitly, this means that \kappa is a regular cardinal if and only if every unbounded subset C \subseteq \kappa has cardinality \kappa. Infinite ...
or a
singular cardinal Singular may refer to: * Singular, the grammatical number that denotes a unit quantity, as opposed to the plural and other forms * Singular or sounder, a group of boar, see List of animal names * Singular (band), a Thai jazz pop duo *'' Singular ...
.


Sets with cardinality of the continuum

A great many sets studied in mathematics have cardinality equal to . Some common examples are the following:


Sets with greater cardinality

Sets with cardinality greater than include: *the set of all subsets of \mathbb (i.e., power set \mathcal(\mathbb)) *the set 2R of
indicator function In mathematics, an indicator function or a characteristic function of a subset of a set is a function that maps elements of the subset to one, and all other elements to zero. That is, if is a subset of some set , then the indicator functio ...
s defined on subsets of the reals (the set 2^ is
isomorphic In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
to \mathcal(\mathbb) â€“ the indicator function chooses elements of each subset to include) *the set \mathbb^\mathbb of all functions from \mathbb to \mathbb *the Lebesgue σ-algebra of \mathbb, i.e., the set of all Lebesgue measurable sets in \mathbb. *the set of all Lebesgue-integrable functions from \mathbb to \mathbb *the set of all Lebesgue-measurable functions from \mathbb to \mathbb *the
Stone–Čech compactification In the mathematical discipline of general topology, Stone–Čech compactification (or Čech–Stone compactification) is a technique for constructing a Universal property, universal map from a topological space ''X'' to a Compact space, compact Ha ...
s of \mathbb, \mathbb, and \mathbb *the set of all automorphisms of the (discrete) field of complex numbers. These all have cardinality 2^\mathfrak c = \beth_2 (
beth two In mathematics, particularly in set theory, the beth numbers are a certain sequence of infinite cardinal numbers (also known as transfinite numbers), conventionally written \beth_0, \beth_1, \beth_2, \beth_3, \dots, where \beth is the Hebrew lett ...
)


See also

* Cardinal characteristic of the continuum


References


Bibliography

*
Paul Halmos Paul Richard Halmos (; 3 March 1916 – 2 October 2006) was a Kingdom of Hungary, Hungarian-born United States, American mathematician and probabilist who made fundamental advances in the areas of mathematical logic, probability theory, operat ...
, ''Naive set theory''. Princeton, NJ: D. Van Nostrand Company, 1960. Reprinted by Springer-Verlag, New York, 1974. (Springer-Verlag edition). * Jech, Thomas, 2003. ''Set Theory: The Third Millennium Edition, Revised and Expanded''. Springer. . * Kunen, Kenneth, 1980. '' Set Theory: An Introduction to Independence Proofs''. Elsevier. . {{PlanetMath attribution, urlname=CardinalityOfTheContinuum, title=cardinality of the continuum Cardinal numbers Set theory Infinity