HOME





Weak Limit Cardinal
In mathematics, limit cardinals are certain cardinal numbers. A cardinal number ''λ'' is a weak limit cardinal if ''λ'' is neither a successor cardinal nor zero. This means that one cannot "reach" ''λ'' from another cardinal by repeated successor operations. These cardinals are sometimes called simply "limit cardinals" when the context is clear. A cardinal ''λ'' is a strong limit cardinal if ''λ'' cannot be reached by repeated powerset operations. This means that ''λ'' is nonzero and, for all ''κ'' < ''λ'', 2''κ'' < ''λ''. Every strong limit cardinal is also a weak limit cardinal, because ''κ''+ ≤ 2''κ'' for every cardinal ''κ'', where ''κ''+ denotes the successor cardinal of ''κ''. The first infinite cardinal, \aleph_0 (), is a strong limit cardinal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Zermelo–Fraenkel Set Theory
In set theory, Zermelo–Fraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes such as Russell's paradox. Today, Zermelo–Fraenkel set theory, with the historically controversial axiom of choice (AC) included, is the standard form of axiomatic set theory and as such is the most common foundation of mathematics. Zermelo–Fraenkel set theory with the axiom of choice included is abbreviated ZFC, where C stands for "choice", and ZF refers to the axioms of Zermelo–Fraenkel set theory with the axiom of choice excluded. Informally, Zermelo–Fraenkel set theory is intended to formalize a single primitive notion, that of a hereditary well-founded set, so that all entities in the universe of discourse are such sets. Thus the axioms of Zermelo–Fraenkel set theory refer only to pure sets and prevent its models fr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Elsevier
Elsevier ( ) is a Dutch academic publishing company specializing in scientific, technical, and medical content. Its products include journals such as ''The Lancet'', ''Cell (journal), Cell'', the ScienceDirect collection of electronic journals, ''Trends (journals), Trends'', the ''Current Opinion (Elsevier), Current Opinion'' series, the online citation database Scopus, the SciVal tool for measuring research performance, the ClinicalKey search engine for clinicians, and the ClinicalPath evidence-based cancer care service. Elsevier's products and services include digital tools for Data management platform, data management, instruction, research analytics, and assessment. Elsevier is part of the RELX Group, known until 2015 as Reed Elsevier, a publicly traded company. According to RELX reports, in 2022 Elsevier published more than 600,000 articles annually in over 2,800 journals. As of 2018, its archives contained over 17 million documents and 40,000 Ebook, e-books, with over one b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second-largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business internationally, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cardinal Number
In mathematics, a cardinal number, or cardinal for short, is what is commonly called the number of elements of a set. In the case of a finite set, its cardinal number, or cardinality is therefore a natural number. For dealing with the case of infinite sets, the infinite cardinal numbers have been introduced, which are often denoted with the Hebrew letter \aleph (aleph) marked with subscript indicating their rank among the infinite cardinals. Cardinality is defined in terms of bijective functions. Two sets have the same cardinality if, and only if, there is a one-to-one correspondence (bijection) between the elements of the two sets. In the case of finite sets, this agrees with the intuitive notion of number of elements. In the case of infinite sets, the behavior is more complex. A fundamental theorem due to Georg Cantor shows that it is possible for two infinite sets to have different cardinalities, and in particular the cardinality of the set of real numbers is gre ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Large Cardinal
In the mathematical field of set theory, a large cardinal property is a certain kind of property of transfinite cardinal numbers. Cardinals with such properties are, as the name suggests, generally very "large" (for example, bigger than the least α such that α=ωα). The proposition that such cardinals exist cannot be proved in the most common axiomatization of set theory, namely ZFC, and such propositions can be viewed as ways of measuring how "much", beyond ZFC, one needs to assume to be able to prove certain desired results. In other words, they can be seen, in Dana Scott's phrase, as quantifying the fact "that if you want more you have to assume more". There is a rough convention that results provable from ZFC alone may be stated without hypotheses, but that if the proof requires other assumptions (such as the existence of large cardinals), these should be stated. Whether this is simply a linguistic convention, or something more, is a controversial point among distinct ph ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Inaccessible Cardinal
In set theory, a cardinal number is a strongly inaccessible cardinal if it is uncountable, regular, and a strong limit cardinal. A cardinal is a weakly inaccessible cardinal if it is uncountable, regular, and a weak limit cardinal. Since about 1950, "inaccessible cardinal" has typically meant "strongly inaccessible cardinal" whereas before it has meant "weakly inaccessible cardinal". Weakly inaccessible cardinals were introduced by . Strongly inaccessible cardinals were introduced by and ; in the latter they were referred to along with \aleph_0 as ''Grenzzahlen'' ( English "limit numbers"). Every strongly inaccessible cardinal is a weakly inaccessible cardinal. The generalized continuum hypothesis implies that all weakly inaccessible cardinals are strongly inaccessible as well. The two notions of an inaccessible cardinal \kappa describe a cardinality \kappa which can not be obtained as the cardinality of a result of typical set-theoretic operations involving only sets of c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Regular Cardinal
In set theory, a regular cardinal is a cardinal number that is equal to its own cofinality. More explicitly, this means that \kappa is a regular cardinal if and only if every unbounded subset C \subseteq \kappa has cardinality \kappa. Infinite well-ordered cardinals that are not regular are called singular cardinals. Finite cardinal numbers are typically not called regular or singular. In the presence of the axiom of choice, any cardinal number can be well-ordered, and so the following are equivalent: # \kappa is a regular cardinal. # If \kappa = \textstyle\sum_ \lambda_i and \lambda_i < \kappa for all i, then , I, \ge \kappa. # If S = \textstyle\bigcup_ S_i, and if , I, < \kappa and , S_i, < \kappa for all i, then , S, < \kappa. That is, every union of fewer than \kappa sets smaller than \kappa is smaller than \kappa. # The
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Generalized Continuum Hypothesis
In mathematics, specifically set theory, the continuum hypothesis (abbreviated CH) is a hypothesis about the possible sizes of infinite sets. It states: Or equivalently: In Zermelo–Fraenkel set theory with the axiom of choice (ZFC), this is equivalent to the following equation in aleph numbers: 2^=\aleph_1, or even shorter with beth numbers: \beth_1 = \aleph_1. The continuum hypothesis was advanced by Georg Cantor in 1878, and establishing its truth or falsehood is the first of Hilbert's 23 problems presented in 1900. The answer to this problem is independent of ZFC, so that either the continuum hypothesis or its negation can be added as an axiom to ZFC set theory, with the resulting theory being consistent if and only if ZFC is consistent. This independence was proved in 1963 by Paul Cohen, complementing earlier work by Kurt Gödel in 1940. The name of the hypothesis comes from the term '' continuum'' for the real numbers. History Cantor believed the continuum hy ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Initial Ordinal
The von Neumann cardinal assignment is a cardinal assignment that uses ordinal numbers. For a well-orderable set ''U'', we define its cardinal number to be the smallest ordinal number equinumerous to ''U'', using the von Neumann definition of an ordinal number. More precisely: :, U, = \mathrm(U) = \inf \, where ON is the class of ordinals. This ordinal is also called the initial ordinal of the cardinal. That such an ordinal exists and is unique is guaranteed by the fact that ''U'' is well-orderable and that the class of ordinals is well-ordered, using the axiom of replacement. With the full axiom of choice, every set is well-orderable, so every set has a cardinal; we order the cardinals using the inherited ordering from the ordinal numbers. This is readily found to coincide with the ordering via ≤''c''. This is a well-ordering of cardinal numbers. Initial ordinal of a cardinal Each ordinal has an associated cardinal, its cardinality, obtained by simply forgetting the ord ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cardinal Number
In mathematics, a cardinal number, or cardinal for short, is what is commonly called the number of elements of a set. In the case of a finite set, its cardinal number, or cardinality is therefore a natural number. For dealing with the case of infinite sets, the infinite cardinal numbers have been introduced, which are often denoted with the Hebrew letter \aleph (aleph) marked with subscript indicating their rank among the infinite cardinals. Cardinality is defined in terms of bijective functions. Two sets have the same cardinality if, and only if, there is a one-to-one correspondence (bijection) between the elements of the two sets. In the case of finite sets, this agrees with the intuitive notion of number of elements. In the case of infinite sets, the behavior is more complex. A fundamental theorem due to Georg Cantor shows that it is possible for two infinite sets to have different cardinalities, and in particular the cardinality of the set of real numbers is gre ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]