Primorial Prime
In mathematics, a primorial prime is a prime number of the form ''pn''# ± 1, where ''pn''# is the primorial of ''pn'' (i.e. the product of the first ''n'' primes). Primality tests show that: : ''pn''# − 1 is prime for ''n'' = 2, 3, 5, 6, 13, 24, 66, 68, 167, 287, 310, 352, 564, 590, 620, 849, 1552, 1849, 67132, 85586, 234725, 334023, 435582, 446895, ... . (''pn'' = 3, 5, 11, 13, 41, 89, 317, 337, 991, 1873, 2053, 2377, 4093, 4297, 4583, 6569, 13033, 15877, 843301, 1098133, 3267113, 4778027, 6354977, 6533299, ... ) : ''pn''# + 1 is prime for ''n'' = 0, 1, 2, 3, 4, 5, 11, 75, 171, 172, 384, 457, 616, 643, 1391, 1613, 2122, 2647, 2673, 4413, 13494, 31260, 33237, 304723, 365071, 436504, 498865, ... . (''pn'' = 1, 2, 3, 5, 7, 11, 31, 379, 1019, 1021, 2657, 3229, 4547, 4787, 11549, 13649, 18523, 23801, 24029, 42209, 145823, 366439, 392113, 4328927, 5256037, 6369619, 7351117, ..., ) The first term of the third sequence is 0 because ''p''0# = 1 (we ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
2309 (number)
2000 (two thousand) is a natural number following 1999 and preceding 2001. It is: :*the highest number expressible using only two unmodified characters in Roman numerals (MM) :*an Achilles number :*smallest four digit eban number :*the sum of all the nban numbers in the sequence Selected numbers in the range 2001–2999 2001 to 2099 * 2001 – sphenic number * 2002 – palindromic number in decimal, base 76, 90, 142, and 11 other non-trivial bases * 2003 – Sophie Germain prime and the smallest prime number in the 2000s * 2004 – Area of the 24tcrystagon* 2005 – A vertically symmetric number * 2006 – number of subsets of with relatively prime elements * 2007 – 22007 + 20072 is prime * 2008 – number of 4 × 4 matrices with nonnegative integer entries and row and column sums equal to 3 * 2009 = 74 − 73 − 72 * 2010 – number of compositions of 12 into relatively prime parts * 2011 – sexy prime with 2017, sum of eleven consecutive primes: 2011 = 157 + 163 + ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Prime Pages
The PrimePages is a website about prime number A prime number (or a prime) is a natural number greater than 1 that is not a Product (mathematics), product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime ...s originally created by Chris Caldwell at the University of Tennessee at Martin who maintained it from 1994 to 2023. The site maintains the list of the "5,000 largest known primes", selected smaller primes of special forms, and many "top twenty" lists for primes of various forms. The PrimePages has articles on primes and primality testing. It includes "The Prime Glossary" with articles on hundreds of glosses related to primes, and "Prime Curios!" with thousands of curios about specific numbers. The database started as a list of "titanic primes" (primes with at least 1000 decimal digits) by Samuel Yates in 1984. On March 11, 2023, the PrimePages moved from primes.utm.edu to t5k.or ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Factorial Prime
A factorial prime is a prime number that is one less or one more than a factorial (all factorials greater than 1 are even). The first 10 factorial primes (for ''n'' = 1, 2, 3, 4, 6, 7, 11, 12, 14) are : : 2 (0! + 1 or 1! + 1), 3 (2! + 1), 5 (3! − 1), 7 (3! + 1), 23 (4! − 1), 719 (6! − 1), 5039 (7! − 1), 39916801 (11! + 1), 479001599 (12! − 1), 87178291199 (14! − 1), ... ''n''! − 1 is prime for : :''n'' = 3, 4, 6, 7, 12, 14, 30, 32, 33, 38, 94, 166, 324, 379, 469, 546, 974, 1963, 3507, 3610, 6917, 21480, 34790, 94550, 103040, 147855, 208003, 632760, ... (resulting in 28 factorial primes) ''n''! + 1 is prime for : :''n'' = 0, 1, 2, 3, 11, 27, 37, 41, 73, 77, 116, 154, 320, 340, 399, 427, 872, 1477, 6380, 26951, 110059, 150209, 288465, 308084, 422429, ... (resulting in 24 factorial primes - the prime 2 is repeated) No other factori ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Euclid Number
In mathematics, Euclid numbers are integers of the form , where ''p''''n'' # is the ''n''th primorial, i.e. the product of the first ''n'' prime numbers. They are named after the ancient Greek mathematician Euclid, in connection with Euclid's theorem that there are infinitely many prime numbers. Examples For example, the first three primes are 2, 3, 5; their product is 30, and the corresponding Euclid number is 31. The first few Euclid numbers are 3, 7, 31, 211, 2311, 30031, 510511, 9699691, 223092871, 6469693231, 200560490131, ... . History It is sometimes falsely stated that Euclid's celebrated proof of the infinitude of prime numbers relied on these numbers. Euclid did not begin with the assumption that the set of all primes is finite. Rather, he said: consider any finite set of primes (he did not assume that it contained only the first ''n'' primes, e.g. it could have been ) and reasoned from there to the conclusion that at least one prime exists that is not in t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Compositorial
In mathematics, and more particularly in number theory, primorial, denoted by "", is a Function (mathematics), function from natural numbers to natural numbers similar to the factorial function, but rather than successively multiplying positive integers, the function only multiplies prime numbers. The name "primorial", coined by Harvey Dubner, draws an analogy to ''primes'' similar to the way the name "factorial" relates to ''factors''. Definition for prime numbers For the th prime number , the primorial is defined as the product of the first primes: :p_n\# = \prod_^n p_k, where is the th prime number. For instance, signifies the product of the first 5 primes: :p_5\# = 2 \times 3 \times 5 \times 7 \times 11= 2310. The first few primorials are: :1 (number), 1, 2 (number), 2, 6 (number), 6, 30 (number), 30, 210 (number), 210, 2310 (number), 2310, 30030, 510510, 9699690... . Asymptotically, primorials grow according to: :p_n\# = e^, where is Little O notation. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematical Intelligencer
''The Mathematical Intelligencer'' is a mathematical journal published by Springer Science+Business Media that aims at a conversational and scholarly tone, rather than the technical and specialist tone more common among academic journals. Volumes are released quarterly with a subset of open access articles. Some articles have been cross-published in the ''Scientific American''. Karen Parshall and Sergei Tabachnikov are currently the co-editors-in-chief. History The journal was started informally in 1971 by Walter Kaufmann-Buehler and Alice and Klaus Peters. "Intelligencer" was chosen by Kaufmann-Buehler as a word that would appear slightly old-fashioned. An exploration of mathematically themed stamps, written by Robin Wilson, became one of its earliest columns. Prior to 1977, articles of the ''Intelligencer'' were not contained in regular volumes and were sent out sporadically to those on a mailing list. To gauge interest, the inaugural mailing included twelve thousand people ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Infinitude Of The Prime Numbers
Euclid's theorem is a fundamental statement in number theory that asserts that there are infinitely many prime numbers. It was first proven by Euclid in his work '' Elements''. There are several proofs of the theorem. Euclid's proof Euclid offered a proof published in his work ''Elements'' (Book IX, Proposition 20), which is paraphrased here. Consider any finite list of prime numbers ''p''1, ''p''2, ..., ''p''''n''. It will be shown that there exists at least one additional prime number not included in this list. Let ''P'' be the product of all the prime numbers in the list: ''P'' = ''p''1''p''2...''p''''n''. Let ''q'' = ''P'' + 1. Then ''q'' is either prime or not: *If ''q'' is prime, then there is at least one more prime that is not in the list, namely, ''q'' itself. *If ''q'' is not prime, then some prime factor ''p'' divides ''q''. If this factor ''p'' were in our list, then it would also divide ''P'' (since ''P'' is the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematical Proof
A mathematical proof is a deductive reasoning, deductive Argument-deduction-proof distinctions, argument for a Proposition, mathematical statement, showing that the stated assumptions logically guarantee the conclusion. The argument may use other previously established statements, such as theorems; but every proof can, in principle, be constructed using only certain basic or original assumptions known as axioms, along with the accepted rules of inference. Proofs are examples of exhaustive deductive reasoning that establish logical certainty, to be distinguished from empirical evidence, empirical arguments or non-exhaustive inductive reasoning that establish "reasonable expectation". Presenting many cases in which the statement holds is not enough for a proof, which must demonstrate that the statement is true in ''all'' possible cases. A proposition that has not been proved but is believed to be true is known as a conjecture, or a hypothesis if frequently used as an assumption for ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Euclid
Euclid (; ; BC) was an ancient Greek mathematician active as a geometer and logician. Considered the "father of geometry", he is chiefly known for the '' Elements'' treatise, which established the foundations of geometry that largely dominated the field until the early 19th century. His system, now referred to as Euclidean geometry, involved innovations in combination with a synthesis of theories from earlier Greek mathematicians, including Eudoxus of Cnidus, Hippocrates of Chios, Thales and Theaetetus. With Archimedes and Apollonius of Perga, Euclid is generally considered among the greatest mathematicians of antiquity, and one of the most influential in the history of mathematics. Very little is known of Euclid's life, and most information comes from the scholars Proclus and Pappus of Alexandria many centuries later. Medieval Islamic mathematicians invented a fanciful biography, and medieval Byzantine and early Renaissance scholars mistook him for the earlier philo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
PrimeGrid
PrimeGrid is a volunteer computing project that searches for very large (up to world-record size) prime numbers whilst also aiming to solve long-standing mathematical conjectures. It uses the Berkeley Open Infrastructure for Network Computing (BOINC) platform. PrimeGrid offers a number of subprojects for prime-number sieving and discovery. Some of these are available through the BOINC client, others through the PRPNet client. Some of the work is manual, i.e. it requires manually starting work units and uploading results. Different subprojects may run on different operating systems, and may have executables for CPUs, GPUs, or both; while running the Lucas–Lehmer–Riesel test, CPUs with Advanced Vector Extensions and Fused Multiply-Add instruction sets will yield the fastest results for non-GPU accelerated workloads. PrimeGrid awards badges to users in recognition of achieving certain defined levels of credit for work done. The badges have no intrinsic value but are valued b ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
2311 (number)
2000 (two thousand) is a natural number following 1999 and preceding 2001. It is: :*the highest number expressible using only two unmodified characters in Roman numerals (MM) :*an Achilles number :*smallest four digit eban number :*the sum of all the nban numbers in the sequence Selected numbers in the range 2001–2999 2001 to 2099 * 2001 – sphenic number * 2002 – palindromic number in decimal, base 76, 90, 142, and 11 other non-trivial bases * 2003 – Sophie Germain prime and the smallest prime number in the 2000s * 2004 – Area of the 24tcrystagon* 2005 – A vertically symmetric number * 2006 – number of subsets of with relatively prime elements * 2007 – 22007 + 20072 is prime * 2008 – number of 4 × 4 matrices with nonnegative integer entries and row and column sums equal to 3 * 2009 = 74 − 73 − 72 * 2010 – number of compositions of 12 into relatively prime parts * 2011 – sexy prime with 2017, sum of eleven consecutive primes: 2011 = 157 + 163 + ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |