HOME





Compositorial
In mathematics, and more particularly in number theory, primorial, denoted by "", is a Function (mathematics), function from natural numbers to natural numbers similar to the factorial function, but rather than successively multiplying positive integers, the function only multiplies prime numbers. The name "primorial", coined by Harvey Dubner, draws an analogy to ''primes'' similar to the way the name "factorial" relates to ''factors''. Definition for prime numbers For the th prime number , the primorial is defined as the product of the first primes: :p_n\# = \prod_^n p_k, where is the th prime number. For instance, signifies the product of the first 5 primes: :p_5\# = 2 \times 3 \times 5 \times 7 \times 11= 2310. The first few primorials are: :1 (number), 1, 2 (number), 2, 6 (number), 6, 30 (number), 30, 210 (number), 210, 2310 (number), 2310, 30030, 510510, 9699690... . Asymptotically, primorials grow according to: :p_n\# = e^, where is Little O notation. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Primorial N Plot
In mathematics, and more particularly in number theory, primorial, denoted by "", is a function from natural numbers to natural numbers similar to the factorial function, but rather than successively multiplying positive integers, the function only multiplies prime numbers. The name "primorial", coined by Harvey Dubner, draws an analogy to ''primes'' similar to the way the name "factorial" relates to ''factors''. Definition for prime numbers For the th prime number , the primorial is defined as the product of the first primes: :p_n\# = \prod_^n p_k, where is the th prime number. For instance, signifies the product of the first 5 primes: :p_5\# = 2 \times 3 \times 5 \times 7 \times 11= 2310. The first few primorials are: : 1, 2, 6, 30, 210, 2310, 30030, 510510, 9699690... . Asymptotically, primorials grow according to: :p_n\# = e^, where is Little O notation. Definition for natural numbers In general, for a positive integer , its primorial, , is the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Infinitude Of The Prime Numbers
Euclid's theorem is a fundamental statement in number theory that asserts that there are infinitely many prime numbers. It was first proven by Euclid in his work '' Elements''. There are several proofs of the theorem. Euclid's proof Euclid offered a proof published in his work ''Elements'' (Book IX, Proposition 20), which is paraphrased here. Consider any finite list of prime numbers ''p''1, ''p''2, ..., ''p''''n''. It will be shown that there exists at least one additional prime number not included in this list. Let ''P'' be the product of all the prime numbers in the list: ''P'' = ''p''1''p''2...''p''''n''. Let ''q'' = ''P'' + 1. Then ''q'' is either prime or not: *If ''q'' is prime, then there is at least one more prime that is not in the list, namely, ''q'' itself. *If ''q'' is not prime, then some prime factor ''p'' divides ''q''. If this factor ''p'' were in our list, then it would also divide ''P'' (since ''P'' is the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Euler Totient Function
In number theory, Euler's totient function counts the positive integers up to a given integer that are relatively prime to . It is written using the Greek letter phi as \varphi(n) or \phi(n), and may also be called Euler's phi function. In other words, it is the number of integers in the range for which the greatest common divisor is equal to 1. The integers of this form are sometimes referred to as totatives of . For example, the totatives of are the six numbers 1, 2, 4, 5, 7 and 8. They are all relatively prime to 9, but the other three numbers in this range, 3, 6, and 9 are not, since and . Therefore, . As another example, since for the only integer in the range from 1 to is 1 itself, and . Euler's totient function is a multiplicative function, meaning that if two numbers and are relatively prime, then . This function gives the order of the multiplicative group of integers modulo (the group of units of the ring \Z/n\Z). It is also used for defining the RS ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Prime Factor
A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, or , involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4. Primes are central in number theory because of the fundamental theorem of arithmetic: every natural number greater than 1 is either a prime itself or can be factorized as a product of primes that is unique up to their order. The property of being prime is called primality. A simple but slow method of checking the primality of a given number , called trial division, tests whether is a multiple of any integer between 2 and . Faster algorithms include the Miller–Rabin primality test, which is fast but has a small chance of error, and the AKS primality test, which always pro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Square-free Integer
In mathematics, a square-free integer (or squarefree integer) is an integer which is divisible by no square number other than 1. That is, its prime factorization has exactly one factor for each prime that appears in it. For example, is square-free, but is not, because 18 is divisible by . The smallest positive square-free numbers are Square-free factorization Every positive integer n can be factored in a unique way as n=\prod_^k q_i^i, where the q_i different from one are square-free integers that are pairwise coprime. This is called the ''square-free factorization'' of . To construct the square-free factorization, let n=\prod_^h p_j^ be the prime factorization of n, where the p_j are distinct prime numbers. Then the factors of the square-free factorization are defined as q_i=\prod_p_j. An integer is square-free if and only if q_i=1 for all i > 1. An integer greater than one is the kth power of another integer if and only if k is a divisor of all i such that q_i\neq 1. Th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


360 (number)
360 (three hundred [and] sixty) is the natural number following 359 (number), 359 and preceding 361 (number), 361. In mathematics * 360 is the 13th highly composite number and one of only seven numbers such that no number less than twice as much has more divisors; the others are 1, 2, 6, 12 (number), 12, 60 (number), 60, and 2520 (number), 2520 . *360 is also the 6th superior highly composite number, the 6th colossally abundant number, a refactorable number, a 5-smooth number, and a Harshad number in Base ten, decimal since the sum of its digits (9) is a divisor of 360. *360 is divisible by the number of its divisors (24 (number), 24), and it is the smallest number divisible by every natural number from 1 to 10, except 7 (number), 7. Furthermore, one of the divisors of 360 is 72 (number), 72, which is the number of Prime number, primes below it. *360 is the sum of twin primes (179 (number), 179 + 181 (number), 181) and the sum of four consecutive Power of three, powers of thre ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Highly Composite Number
A highly composite number is a positive integer that has more divisors than all smaller positive integers. If ''d''(''n'') denotes the number of divisors of a positive integer ''n'', then a positive integer ''N'' is highly composite if ''d''(''N'') > ''d''(''n'') for all ''n'' < ''N''. For example, 6 is highly composite because ''d''(6)=4, and for ''n''=1,2,3,4,5, you get ''d''(''n'')=1,2,2,3,2, respectively, which are all less than 4. A related concept is that of a largely composite number, a positive integer that has at least as many divisors as all smaller positive integers. The name can be somewhat misleading, as the first two highly composite numbers (1 and 2) are not actually composite numbers; however, all further terms are. Ramanujan wrote a paper on highly composite numbers in 1915. Th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Primes In Arithmetic Progression
In number theory, primes in arithmetic progression are any sequence of at least three prime numbers that are consecutive terms in an arithmetic progression. An example is the sequence of primes (3, 7, 11), which is given by a_n = 3 + 4n for 0 \le n \le 2. According to the Green–Tao theorem, there exist arbitrarily long arithmetic progressions in the sequence of primes. Sometimes the phrase may also be used about primes which belong to an arithmetic progression which also contains composite numbers. For example, it can be used about primes in an arithmetic progression of the form an + b, where ''a'' and ''b'' are coprime which according to Dirichlet's theorem on arithmetic progressions contains infinitely many primes, along with infinitely many composites. For any integer k\geq 3, an AP-''k'' (also called PAP-''k'') is any sequence of k primes in arithmetic progression. An AP-k can be written as k primes of the form an+b, for fixed integers a (called the common difference) and b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Euclid's Theorem
Euclid's theorem is a fundamental statement in number theory that asserts that there are Infinite set, infinitely many prime number, prime numbers. It was first proven by Euclid in his work ''Euclid's Elements, Elements''. There are several proofs of the theorem. Euclid's proof Euclid offered a proof published in his work ''Elements'' (Book IX, Proposition 20), which is paraphrased here. Consider any finite list of prime numbers ''p''1, ''p''2, ..., ''p''''n''. It will be shown that there exists at least one additional prime number not included in this list. Let ''P'' be the product of all the prime numbers in the list: ''P'' = ''p''1''p''2...''p''''n''. Let ''q'' = ''P'' + 1. Then ''q'' is either prime or not: *If ''q'' is prime, then there is at least one more prime that is not in the list, namely, ''q'' itself. *If ''q'' is not prime, then some prime factor ''p'' divides ''q''. If this factor ''p'' were in our list, then it wo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Engel Expansion
The Engel expansion of a positive real number ''x'' is the unique non-decreasing sequence of positive integers (a_1,a_2,a_3,\dots) such that :x=\frac+\frac+\frac+\cdots = \frac\!\left(1 + \frac\!\left(1 + \frac\left(1+\cdots\right)\right)\right) For instance, Euler's number ''e'' has the Engel expansion :1, 1, 2, 3, 4, 5, 6, 7, 8, ... corresponding to the infinite series :e=\frac+\frac+\frac+\frac+\frac+\cdots Rational numbers have a finite Engel expansion, while irrational numbers have an infinite Engel expansion. If ''x'' is rational, its Engel expansion provides a representation of ''x'' as an Egyptian fraction. Engel expansions are named after Friedrich Engel, who studied them in 1913. An expansion analogous to an Engel expansion, in which alternating terms are negative, is called a Pierce expansion. Engel expansions, continued fractions, and Fibonacci observe that an Engel expansion can also be written as an ascending variant of a continued fraction: :x = \cfra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]