Glycerol-3-phosphate 1-dehydrogenase (NADP )
   HOME



picture info

Glycerol-3-phosphate 1-dehydrogenase (NADP )
''sn''-Glycerol 3-phosphate is the organic ion with the formula HOCH2CH(OH)CH2OPO32-. It is one of two stereoisomers of the ester of phosphoric acid, dibasic phosphoric acid (HOPO32-) and glycerol. It is a component of bacterial and eukaryotic glycerophospholipids. From a historical reason, it is also known as -glycerol 3-phosphate, -glycerol 1-phosphate, -α-glycerophosphoric acid. Biosynthesis Glycerol 3-phosphate is synthesized by reducing dihydroxyacetone phosphate (DHAP), an intermediate in glycolysis. The reduction is catalyzed by glycerol-3-phosphate dehydrogenase. DHAP and thus glycerol 3-phosphate can also be synthesized from amino acids and citric acid cycle intermediates via the glyceroneogenesis pathway. : + NAD(P)H + H+ → + NAD(P)+ It is also synthesized by the phosphorylation of glycerol, which is generated by hydrolysis of fats. This esterification is catalyzed by glycerol kinase. : + Adenosine triphosphate, ATP → + Adenosine diphosphate, ADP Metabolism ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Glycerol 1-phosphate
''sn''-Glycerol 1-phosphate is the conjugate base of a phosphoric ester of glycerol. It is a component of ether lipids, which are common for archaea. Biosynthesis and metabolism Glycerol 1-phosphate is synthesized by reducing dihydroxyacetone phosphate (DHAP), a glycolysis intermediate, with sn-glycerol-1-phosphate dehydrogenase, ''sn''-glycerol-1-phosphate dehydrogenase. DHAP and thus glycerol 1-phosphate is also possible to be synthesized from amino acids and citric acid cycle intermediates via glyconeogenesis, gluconeogenesis pathway. : + NAD(P)H + H+ → + NAD(P)+ Glycerol 1-phosphate is a starting material for ''de novo'' synthesis of ether lipids, such as those derived from archaeol and caldarchaeol. It is first geranylgeranylated on its ''sn''-3 position by a cytosolic enzyme, phosphoglycerol geranylgeranyltransferase. A second geranylgeranyl group is then added on the ''sn''-2 position making unsaturated archaetidic acid. Lipid divide Organisms other than archaea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Phosphorylation
In biochemistry, phosphorylation is described as the "transfer of a phosphate group" from a donor to an acceptor. A common phosphorylating agent (phosphate donor) is ATP and a common family of acceptor are alcohols: : This equation can be written in several ways that are nearly equivalent that describe the behaviors of various protonated states of ATP, ADP, and the phosphorylated product. As is clear from the equation, a phosphate group per se is not transferred, but a phosphoryl group (PO3-). Phosphoryl is an electrophile. This process and its inverse, dephosphorylation, are common in biology. Text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License. Protein phosphorylation often activates (or deactivates) many enzymes. During respiration Phosphorylation is essential to the processes of both anaerobic and aerobic respiration, which involve the production of adenosine triphosphate (ATP), the "high-energy" exc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Glycerol-1-phosphatase
The enzyme glycerol-1-phosphatase (EC 3.1.3.21) catalyzes the reaction :glycerol 1-phosphate + H2O \rightleftharpoons glycerol + phosphate This enzyme belongs to the family of hydrolases, specifically those acting on phosphoric monoester bonds. The systematic name is glycerol-1-phosphate phosphohydrolase. Other names in common use include α-glycerophosphatase, α-glycerol phosphatase, glycerol 3-phosphatase, glycerol-3-phosphate phosphatase, and glycerol 3-phosphate phosphohydrolase. This enzyme participates in glycerolipid metabolism. Among the organisms that have been shown to express this enzymatic activity are '' A. thaliana'' (plant) via the ''AtSgpp'' and ''AtGpp'' gene products; '' D. salina'' (alga); '' S. cerevisiae'' (fungus) via the ''GPP1/RHR2/YIL053W'' and ''GPP2/HOR2/YER062C'' gene products; '' C. albicans'' (fungus) via the ''GPP1'' gene product; ''M. tuberculosis'' (bacteria) via the ''rv1692'' gene product; and C57BL/6N mice and Wistar rat Laboratory rat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE