HOME





Zsigmondy's Theorem
In number theory, Zsigmondy's theorem, named after Karl Zsigmondy, states that if a>b>0 are coprime integers, then for any integer n \ge 1, there is a prime number ''p'' (called a ''primitive prime divisor'') that divides a^n-b^n and does not divide a^k-b^k for any positive integer k1 and n is not equal to 6, then 2^n-1 has a prime divisor not dividing any 2^k-1 with k. Similarly, a^n+b^n has at least one primitive prime divisor with the exception 2^3+1^3=9. Zsigmondy's theorem is often useful, especially in , where it is used to prove that various groups have distinct

picture info

Number Theory
Number theory is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions. Number theorists study prime numbers as well as the properties of mathematical objects constructed from integers (for example, rational numbers), or defined as generalizations of the integers (for example, algebraic integers). Integers can be considered either in themselves or as solutions to equations (Diophantine geometry). Questions in number theory can often be understood through the study of Complex analysis, analytical objects, such as the Riemann zeta function, that encode properties of the integers, primes or other number-theoretic objects in some fashion (analytic number theory). One may also study real numbers in relation to rational numbers, as for instance how irrational numbers can be approximated by fractions (Diophantine approximation). Number theory is one of the oldest branches of mathematics alongside geometry. One quirk of number theory is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fibonacci Sequence
In mathematics, the Fibonacci sequence is a Integer sequence, sequence in which each element is the sum of the two elements that precede it. Numbers that are part of the Fibonacci sequence are known as Fibonacci numbers, commonly denoted . Many writers begin the sequence with 0 and 1, although some authors start it from 1 and 1 and some (as did Fibonacci) from 1 and 2. Starting from 0 and 1, the sequence begins : 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ... The Fibonacci numbers were first described in Indian mathematics as early as 200 BC in work by Pingala on enumerating possible patterns of Sanskrit poetry formed from syllables of two lengths. They are named after the Italian mathematician Leonardo of Pisa, also known as Fibonacci, who introduced the sequence to Western European mathematics in his 1202 book . Fibonacci numbers appear unexpectedly often in mathematics, so much so that there is an entire journal dedicated to their study, the ''Fibonacci Quarterly''. Appli ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dirichlet's Theorem On Arithmetic Progressions
In number theory, Dirichlet's theorem, also called the Dirichlet prime number theorem, states that for any two positive coprime integers ''a'' and ''d'', there are infinitely many primes of the form ''a'' + ''nd'', where ''n'' is also a positive integer. In other words, there are infinitely many primes that are congruent to ''a'' modulo ''d''. The numbers of the form ''a'' + ''nd'' form an arithmetic progression :a,\ a+d,\ a+2d,\ a+3d,\ \dots,\ and Dirichlet's theorem states that this sequence contains infinitely many prime numbers. The theorem extends Euclid's theorem that there are infinitely many prime numbers (of the form 1 + 2n). Stronger forms of Dirichlet's theorem state that for any such arithmetic progression, the sum of the reciprocals of the prime numbers in the progression diverges and that different such arithmetic progressions with the same modulus have approximately the same proportions of primes. Equivalently, the primes are evenly dis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Harshad Number
In mathematics, a harshad number (or Niven number) in a given radix, number base is an integer that is divisible by the digit sum, sum of its digits when written in that base. Harshad numbers in base are also known as -harshad (or -Niven) numbers. Because being a Harshad number is determined based on the base the number is expressed in, a number can be a Harshad number many times over. So-called Trans-Harshad numbers are Harshad numbers in every base. Harshad numbers were defined by D. R. Kaprekar, a mathematician from India. The word "harshad" comes from the Sanskrit ' (joy) + ' (give), meaning joy-giver. The term "Niven number" arose from a paper delivered by Ivan M. Niven at a conference on number theory in 1977. Definition Stated mathematically, let be a positive integer with digits when written in base , and let the digits be a_i (i = 0, 1, \ldots, m-1). (It follows that a_i must be either zero or a positive integer up to .) can be expressed as :X=\sum_^ a_i n^i. is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Palindromic Numbers
A palindromic number (also known as a numeral palindrome or a numeric palindrome) is a number (such as 16361) that remains the same when its digits are reversed. In other words, it has reflectional symmetry across a vertical axis. The term ''palindromic'' is derived from palindrome, which refers to a word (such as ''rotor'' or ''racecar'') whose spelling is unchanged when its letters are reversed. The first 30 palindromic numbers (in decimal) are: : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 101, 111, 121, 131, 141, 151, 161, 171, 181, 191, 202, ... . Palindromic numbers receive most attention in the realm of recreational mathematics. A typical problem asks for numbers that possess a certain property ''and'' are palindromic. For instance: * The palindromic primes are 2, 3, 5, 7, 11, 101, 131, 151, ... . * The palindromic square numbers are 0, 1, 4, 9, 121, 484, 676, 10201, 12321, ... . In any base there are infinitely many palindromic numbers, since in any ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fermat's Little Theorem
In number theory, Fermat's little theorem states that if is a prime number, then for any integer , the number is an integer multiple of . In the notation of modular arithmetic, this is expressed as a^p \equiv a \pmod p. For example, if and , then , and is an integer multiple of . If is not divisible by , that is, if is coprime to , then Fermat's little theorem is equivalent to the statement that is an integer multiple of , or in symbols: a^ \equiv 1 \pmod p. For example, if and , then , and is a multiple of . Fermat's little theorem is the basis for the Fermat primality test and is one of the fundamental results of elementary number theory. The theorem is named after Pierre de Fermat, who stated it in 1640. It is called the "little theorem" to distinguish it from Fermat's Last Theorem.. History Pierre de Fermat first stated the theorem in a letter dated October 18, 1640, to his friend and confidant Frénicle de Bessy. His formulation is equivalent to the following ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Kaprekar's Constant
In number theory, Kaprekar's routine is an iterative algorithm named after its inventor, Indian mathematician D. R. Kaprekar. Each iteration starts with a four-digit random number, sorts the digits into descending and ascending order, and calculates the difference between the two new numbers. As an example, starting with the number 8991 in decimal, base 10: : : : : 6174 (number), 6174, known as Kaprekar's constant, is a fixed point (mathematics), fixed point of this algorithm. Any four-digit number (in base 10) with at least two distinct digits will reach 6174 within seven iterations. The algorithm runs on any natural number in any given number base. Definition and properties The algorithm is as follows: # Choose any four digit natural number n in a given number base b. This is the first number of the sequence. # Create a new number \alpha by Sorting algorithm, sorting the digits of n in descending order, and another number \beta by sorting the digits of n in ascending order. The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Wilson Prime
In number theory, a Wilson prime is a prime number p such that p^2 divides (p-1)!+1, where "!" denotes the factorial function; compare this with Wilson's theorem, which states that every prime p divides (p-1)!+1. Both are named for 18th-century English mathematician John Wilson; in 1770, Edward Waring credited the theorem to Wilson, although it had been stated centuries earlier by Ibn al-Haytham. The only known Wilson primes are 5, 13, and 563 . Costa et al. write that "the case p=5 is trivial", and credit the observation that 13 is a Wilson prime to . Early work on these numbers included searches by N. G. W. H. Beeger and Emma Lehmer, but 563 was not discovered until the early 1950s, when computer searches could be applied to the problem. If any others exist, they must be greater than 2 × 1013. It has been conjectured that infinitely many Wilson primes exist, and that the number of Wilson primes in an interval ,y/math> is about \log\log_x y. Several c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Upper Bound
In mathematics, particularly in order theory, an upper bound or majorant of a subset of some preordered set is an element of that is every element of . Dually, a lower bound or minorant of is defined to be an element of that is less than or equal to every element of . A set with an upper (respectively, lower) bound is said to be bounded from above or majorized (respectively bounded from below or minorized) by that bound. The terms bounded above (bounded below) are also used in the mathematical literature for sets that have upper (respectively lower) bounds. Examples For example, is a lower bound for the set (as a subset of the integers or of the real numbers, etc.), and so is . On the other hand, is not a lower bound for since it is not smaller than every element in . and other numbers ''x'' such that would be an upper bound for ''S''. The set has as both an upper bound and a lower bound; all other numbers are either an upper bound or a lower bound for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Finite Set
In mathematics, particularly set theory, a finite set is a set that has a finite number of elements. Informally, a finite set is a set which one could in principle count and finish counting. For example, is a finite set with five elements. The number of elements of a finite set is a natural number (possibly zero) and is called the ''cardinality (or the cardinal number)'' of the set. A set that is not a finite set is called an '' infinite set''. For example, the set of all positive integers is infinite: Finite sets are particularly important in combinatorics, the mathematical study of counting. Many arguments involving finite sets rely on the pigeonhole principle, which states that there cannot exist an injective function from a larger finite set to a smaller finite set. Definition and terminology Formally, a set S is called finite if there exists a bijection for some natural number n (natural numbers are defined as sets in Zermelo-Fraenkel set theory). The number n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Elliptic Divisibility Sequence
In mathematics, an elliptic divisibility sequence (EDS) is a sequence of integers satisfying a nonlinear recursion relation arising from division polynomials on elliptic curves. EDS were first defined, and their arithmetic properties studied, by Morgan WardMorgan Ward, Memoir on elliptic divisibility sequences, ''Amer. J. Math.'' 70 (1948), 31–74. in the 1940s. They attracted only sporadic attention until around 2000, when EDS were taken up as a class of nonlinear recurrences that are more amenable to analysis than most such sequences. This tractability is due primarily to the close connection between EDS and elliptic curves. In addition to the intrinsic interest that EDS have within number theory, EDS have applications to other areas of mathematics including logic and cryptography. Definition A (nondegenerate) ''elliptic divisibility sequence'' (EDS) is a sequence of integers defined recursively by four initial values , , , , with ≠ 0 and with subsequent values ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Divisibility Sequence
In mathematics, a divisibility sequence is an integer sequence (a_n) indexed by positive integers ''n'' such that :\textm\mid n\texta_m\mid a_n for all ''m'', ''n''. That is, whenever one index is a multiple of another one, then the corresponding term also is a multiple of the other term. The concept can be generalized to sequences with values in any ring where the concept of divisibility is defined. A strong divisibility sequence is an integer sequence (a_n) such that for all positive integers ''m'', ''n'', :\gcd(a_m,a_n) = a_. Every strong divisibility sequence is a divisibility sequence: \gcd(m,n) = m if and only if m\mid n. Therefore, by the strong divisibility property, \gcd(a_m,a_n) = a_m and therefore a_m\mid a_n. Examples * Any constant sequence is a strong divisibility sequence. * Every sequence of the form a_n = kn, for some nonzero integer ''k'', is a divisibility sequence. * The numbers of the form 2^n-1 (Mersenne numbers) form a strong divisib ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]