Zero Sharp
In the mathematical discipline of set theory, 0# (zero sharp, also 0#) is the set of true formulae about indiscernibles and order-indiscernibles in the Gödel constructible universe. It is often encoded as a subset of the natural numbers (using Gödel numbering), or as a subset of the hereditarily finite sets, or as a real number. Its existence is unprovable in ZFC, the standard form of axiomatic set theory, but follows from a suitable large cardinal axiom. It was first introduced as a set of formulae in Silver's 1966 thesis, later published as , where it was denoted by Σ, and rediscovered by , who considered it as a subset of the natural numbers and introduced the notation O# (with a capital letter O; this later changed to the numeral '0'). Roughly speaking, if 0# exists then the universe ''V'' of sets is much larger than the universe ''L'' of constructible sets, while if it does not exist then the universe of all sets is closely approximated by the constructible sets. De ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Set Theory
Set theory is the branch of mathematical logic that studies Set (mathematics), sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory – as a branch of mathematics – is mostly concerned with those that are relevant to mathematics as a whole. The modern study of set theory was initiated by the German mathematicians Richard Dedekind and Georg Cantor in the 1870s. In particular, Georg Cantor is commonly considered the founder of set theory. The non-formalized systems investigated during this early stage go under the name of ''naive set theory''. After the discovery of Paradoxes of set theory, paradoxes within naive set theory (such as Russell's paradox, Cantor's paradox and the Burali-Forti paradox), various axiomatic systems were proposed in the early twentieth century, of which Zermelo–Fraenkel set theory (with or without the axiom of choice) is still the best-known and most studied. Set the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Chang's Conjecture
In model theory, a branch of mathematical logic, Chang's conjecture, attributed to Chen Chung Chang by , states that every model of type (ω2,ω1) for a countable language has an elementary submodel of type (ω1, ω). A model is of type (α,β) if it is of cardinality α and a unary relation is represented by a subset of cardinality β. The usual notation is (\omega_2,\omega_1)\twoheadrightarrow(\omega_1,\omega). The axiom of constructibility implies that Chang's conjecture fails. Silver proved the consistency of Chang's conjecture from the consistency of an ω1- Erdős cardinal. Hans-Dieter Donder showed a weak version of the reverse implication: if CC is not only consistent but actually holds, then ω2 is ω1-Erdős in K. More generally, Chang's conjecture for two pairs (α,β), (γ,δ) of cardinals is the claim that every model of type (α,β) for a countable language has an elementary submodel of type (γ,δ). The consistency of (\omega_3,\omega_2)\twoheadrightarrow(\omega_2 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cardinality
The thumb is the first digit of the hand, next to the index finger. When a person is standing in the medical anatomical position (where the palm is facing to the front), the thumb is the outermost digit. The Medical Latin English noun for thumb is ''pollex'' (compare ''hallux'' for big toe), and the corresponding adjective for thumb is ''pollical''. Definition Thumb and fingers The English word ''finger'' has two senses, even in the context of appendages of a single typical human hand: 1) Any of the five terminal members of the hand. 2) Any of the four terminal members of the hand, other than the thumb. Linguistically, it appears that the original sense was the first of these two: (also rendered as ) was, in the inferred Proto-Indo-European language, a suffixed form of (or ), which has given rise to many Indo-European-family words (tens of them defined in English dictionaries) that involve, or stem from, concepts of fiveness. The thumb shares the following with each of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Jensen's Covering Lemma
In set theory, Jensen's covering theorem states that if 0# does not exist then every uncountable set of ordinals is contained in a constructible set of the same cardinality. Informally this conclusion says that the constructible universe is close to the universe of all sets. The first proof appeared in . Silver later gave a fine-structure-free proof using his machines and finally gave an even simpler proof. The converse of Jensen's covering theorem is also true: if 0# exists then the countable set of all cardinals less than \aleph_\omega cannot be covered by a constructible set of cardinality less than \aleph_\omega. In his book ''Proper Forcing'', Shelah Shelah may refer to: * Shelah (son of Judah), a son of Judah according to the Bible * Shelah (name), a Hebrew personal name * Shlach, the 37th weekly Torah portion (parshah) in the annual Jewish cycle of Torah reading * Salih, a prophet described i ... proved a strong form of Jensen's covering lemma. Hugh Woodin states it ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Inner Model
In set theory, a branch of mathematical logic, an inner model for a theory ''T'' is a substructure of a model ''M'' of a set theory that is both a model for ''T'' and contains all the ordinals of ''M''. Definition Let ''L'' = ⟨∈⟩ be the language of set theory. Let ''S'' be a particular set theory, for example the ZFC axioms and let ''T'' (possibly the same as ''S'') also be a theory in ''L.'' If ''M'' is a model for ''S,'' and ''N'' is an such that # ''N'' is a substructure of ''M,'' i.e. the interpretation ∈''N'' of ∈ in ''N'' is ∈''M'' ∩ ''N''2 # ''N'' is a model of ''T'' # the domain of ''N'' is a transitive class of ''M'' # ''N'' contains all ordinals in ''M'' then we say that ''N'' is an inner model of ''T'' (in ''M''). Usually ''T'' will equal (or subsume) ''S'', so that ''N'' is a model for ''S'' 'inside' the model ''M'' of ''S''. If only conditions 1 and 2 hold, ''N'' is called a standard model of ''T'' (in ''M''), a ''standard ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Axiom Of Constructibility
The axiom of constructibility is a possible axiom for set theory in mathematics that asserts that every set is constructible. The axiom is usually written as ''V'' = ''L''. The axiom, first investigated by Kurt Gödel, is inconsistent with the proposition that zero sharp exists and stronger large cardinal axioms (see list of large cardinal properties). Generalizations of this axiom are explored in inner model theory. Implications The axiom of constructibility implies the axiom of choice (AC), given Zermelo–Fraenkel set theory without the axiom of choice (ZF). It also settles many natural mathematical questions that are independent of Zermelo–Fraenkel set theory with the axiom of choice (ZFC); for example, the axiom of constructibility implies the generalized continuum hypothesis, the negation of Suslin's hypothesis, and the existence of an analytical (in fact, \Delta^1_2) non-measurable set of real numbers, all of which are independent of ZFC. The axiom of constructib ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ineffable Cardinal
In the mathematics of transfinite numbers, an ineffable cardinal is a certain kind of large cardinal number, introduced by . In the following definitions, \kappa will always be a regular uncountable cardinal number. A cardinal number \kappa is called almost ineffable if for every f: \kappa \to \mathcal(\kappa) (where \mathcal(\kappa) is the powerset of \kappa) with the property that f(\delta) is a subset of \delta for all ordinals \delta < \kappa, there is a subset of having cardinality and for , in the sense that for any in , . A [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cardinal Number
In mathematics, a cardinal number, or cardinal for short, is what is commonly called the number of elements of a set. In the case of a finite set, its cardinal number, or cardinality is therefore a natural number. For dealing with the case of infinite sets, the infinite cardinal numbers have been introduced, which are often denoted with the Hebrew letter \aleph (aleph) marked with subscript indicating their rank among the infinite cardinals. Cardinality is defined in terms of bijective functions. Two sets have the same cardinality if, and only if, there is a one-to-one correspondence (bijection) between the elements of the two sets. In the case of finite sets, this agrees with the intuitive notion of number of elements. In the case of infinite sets, the behavior is more complex. A fundamental theorem due to Georg Cantor shows that it is possible for two infinite sets to have different cardinalities, and in particular the cardinality of the set of real numbers is gre ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Uncountable Set
In mathematics, an uncountable set, informally, is an infinite set that contains too many elements to be countable. The uncountability of a set is closely related to its cardinal number: a set is uncountable if its cardinal number is larger than aleph-null, the cardinality of the natural numbers. Examples of uncountable sets include the set of all real numbers and set of all subsets of the natural numbers. Characterizations There are many equivalent characterizations of uncountability. A set ''X'' is uncountable if and only if any of the following conditions hold: * There is no injective function (hence no bijection) from ''X'' to the set of natural numbers. * ''X'' is nonempty and for every ω- sequence of elements of ''X'', there exists at least one element of X not included in it. That is, ''X'' is nonempty and there is no surjective function from the natural numbers to ''X''. * The cardinality of ''X'' is neither finite nor equal to \aleph_0 ( aleph-null). * The ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Regular Cardinal
In set theory, a regular cardinal is a cardinal number that is equal to its own cofinality. More explicitly, this means that \kappa is a regular cardinal if and only if every unbounded subset C \subseteq \kappa has cardinality \kappa. Infinite well-ordered cardinals that are not regular are called singular cardinals. Finite cardinal numbers are typically not called regular or singular. In the presence of the axiom of choice, any cardinal number can be well-ordered, and so the following are equivalent: # \kappa is a regular cardinal. # If \kappa = \textstyle\sum_ \lambda_i and \lambda_i < \kappa for all , then . # If , and if and for all , then . That is, every union of fewer than sets smaller than is smaller than . # The [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Jensen's Covering Theorem
In set theory, Jensen's covering theorem states that if 0# does not exist then every uncountable set of ordinals is contained in a constructible set of the same cardinality. Informally this conclusion says that the constructible universe is close to the universe of all sets. The first proof appeared in . Silver later gave a fine-structure-free proof using his machines and finally gave an even simpler proof. The converse of Jensen's covering theorem is also true: if 0# exists then the countable set of all cardinals less than \aleph_\omega cannot be covered by a constructible set of cardinality less than \aleph_\omega. In his book ''Proper Forcing'', Shelah Shelah may refer to: * Shelah (son of Judah), a son of Judah according to the Bible * Shelah (name), a Hebrew personal name * Shlach, the 37th weekly Torah portion (parshah) in the annual Jewish cycle of Torah reading * Salih, a prophet described i ... proved a strong form of Jensen's covering lemma. Hugh Woodin states it ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Turing Degree
In computer science and mathematical logic the Turing degree (named after Alan Turing) or degree of unsolvability of a set of natural numbers measures the level of algorithmic unsolvability of the set. Overview The concept of Turing degree is fundamental in computability theory, where sets of natural numbers are often regarded as decision problems. The Turing degree of a set is a measure of how difficult it is to solve the decision problem associated with the set, that is, to determine whether an arbitrary number is in the given set. Two sets are Turing equivalent if they have the same level of unsolvability; each Turing degree is a collection of Turing equivalent sets, so that two sets are in different Turing degrees exactly when they are not Turing equivalent. Furthermore, the Turing degrees are partially ordered, so that if the Turing degree of a set ''X'' is less than the Turing degree of a set ''Y'', then any (possibly noncomputable) procedure that correctly decides whether ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |