HOME





Xlox
PDX1 (pancreatic and duodenal homeobox 1), also known as insulin promoter factor 1, is a transcription factor in the ParaHox gene cluster.Brooke, N. M., Garcia-Fernàndez, J., & Holland, P. W. (1998). The ParaHox gene cluster is an evolutionary sister of the Hox gene cluster. Nature, 392(6679), 920. In vertebrates, Pdx1 is necessary for pancreatic development, including β-cell maturation, and duodenal differentiation. In humans this protein is encoded by the ''PDX1'' gene, which was formerly known as ''IPF1''. The gene was originally identified in the clawed frog ''Xenopus laevis'' and is present widely across the evolutionary diversity of bilaterian animals, although it has been lost in evolution in arthropods and nematodes. Despite the gene name being ''Pdx1'', there is no ''Pdx2'' gene in most animals; single-copy Pdx1 orthologs have been identified in all mammals. Coelacanth and cartilaginous fish are, so far, the only vertebrates shown to have two ''Pdx'' genes, ''Pdx1 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


ParaHox
The ParaHox gene cluster is an array of homeobox genes (involved in morphogenesis, the regulation of patterns of anatomical development) from the Gsx, Xlox ( Pdx) and Cdx gene families. Regulatory gene cluster These genes were first shown to be arranged into a physically-linked chromosomal cluster in amphioxus, an invertebrate with a single member of each of the three gene families. All the ParaHox genes in the amphioxus genome are therefore in the ParaHox gene cluster. In contrast, the human genome has six ParaHox genes ( GSX1, GSX2, PDX1, CDX1, CDX2, CDX4), of which three genes ( GSX1, PDX1 (=IPF1), CDX2) are physically linked to form a human ParaHox gene cluster on chromosome 13. Mice have a homologous ParaHox gene cluster on chromosome 5. The other three human ParaHox genes are remnants from duplicated ParaHox gene clusters that were generated in the 2R genome duplications at the base of vertebrate evolution. Some vertebrates, notably chondrichthyan fish and coel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Transcription Factor
In molecular biology, a transcription factor (TF) (or sequence-specific DNA-binding factor) is a protein that controls the rate of transcription (genetics), transcription of genetics, genetic information from DNA to messenger RNA, by binding to a specific DNA sequence. The function of TFs is to regulate—turn on and off—genes in order to make sure that they are Gene expression, expressed in the desired Cell (biology), cells at the right time and in the right amount throughout the life of the cell and the organism. Groups of TFs function in a coordinated fashion to direct cell division, cell growth, and cell death throughout life; cell migration and organization (body plan) during embryonic development; and intermittently in response to signals from outside the cell, such as a hormone. There are approximately 1600 TFs in the human genome. Transcription factors are members of the proteome as well as regulome. TFs work alone or with other proteins in a complex, by promoting (a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Alpha Cell
Alpha cells (α-cells) are endocrine cells that are found in the Islets of Langerhans in the pancreas. Alpha cells secrete the peptide hormone glucagon in order to increase glucose levels in the blood stream. Discovery Islets of Langerhans were first discussed by Paul Langerhans in his medical thesis in 1869. This same year, Édouard Laguesse named them after Langerhans. At first, there was a lot of controversy about what the Islets were made of and what they did. It appeared that all of the cells were the same within the Islet, but were histologically distinct from acini cells. Laguesse discovered that the cells within the Islets of Langerhans contained granules that distinguished them from acini cells. He also determined that these granules were products of the metabolism of the cells in which they were contained. Michael Lane was the one to discover that alpha cells were histologically different than beta cells in 1907. Before the function of alpha cells was discovered, th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Endocrine
The endocrine system is a messenger system in an organism comprising feedback loops of hormones that are released by internal glands directly into the circulatory system and that target and regulate distant organs. In vertebrates, the hypothalamus is the neural control center for all endocrine systems. In humans, the major endocrine glands are the thyroid, parathyroid, pituitary, pineal, and adrenal glands, and the (male) testis and (female) ovaries. The hypothalamus, pancreas, and thymus also function as endocrine glands, among other functions. (The hypothalamus and pituitary glands are organs of the neuroendocrine system. One of the most important functions of the hypothalamusit is located in the brain adjacent to the pituitary glandis to link the endocrine system to the nervous system via the pituitary gland.) Other organs, such as the kidneys, also have roles within the endocrine system by secreting certain hormones. The study of the endocrine system and its disorde ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Exocrine
Exocrine glands are glands that secrete substances onto an epithelial surface by way of a duct. Examples of exocrine glands include sweat, salivary, mammary, ceruminous, lacrimal, sebaceous, prostate and mucous. Exocrine glands are one of two types of glands in the human body, the other being endocrine glands, which secrete their products directly into the bloodstream. The liver and pancreas are both exocrine and endocrine glands; they are exocrine glands because they secrete products—bile and pancreatic juice—into the gastrointestinal tract through a series of ducts, and endocrine because they secrete other substances directly into the bloodstream. Exocrine sweat glands are part of the integumentary system; they have eccrine and apocrine types. Classification Structure Exocrine glands contain a glandular portion and a duct portion, the structures of which can be used to classify the gland. * The duct portion may be branched (called compound) or unbranched (called simpl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Islets Of Langerhans
The pancreatic islets or islets of Langerhans are the regions of the pancreas that contain its endocrine (hormone-producing) cells, discovered in 1869 by German pathological anatomist Paul Langerhans. The pancreatic islets constitute 1–2% of the pancreas volume and receive 10–15% of its blood flow. The pancreatic islets are arranged in density routes throughout the human pancreas, and are important in the metabolism of glucose. Structure There are about 1 million islets distributed throughout the pancreas of a healthy adult human. While islets vary in size, the average diameter is about 0.2 mm.:928 Each islet is separated from the surrounding pancreatic tissue by a thin, fibrous, connective tissue capsule which is continuous with the fibrous connective tissue that is interwoven throughout the rest of the pancreas.:928 Microanatomy Hormones produced in the pancreatic islets are secreted directly into the blood flow by (at least) five types of cells. In rat islets, e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ngn3
Neurogenins, often abbreviated as Ngn, are a family of bHLH transcription factors involved in specifying neuronal differentiation. The family consisting of Neurogenin-1, Neurogenin-2, and Neurogenin-3, plays a fundamental role in specifying neural precursor cells and regulating the differentiation of neurons during embryonic development. It is one of many gene families related to the ''atonal'' gene in Drosophila. Other positive regulators of neuronal differentiation also expressed during early neural development include NeuroD and ASCL1. Function Neurogenins primarily govern the transition of neural progenitor cells to neurons by activating specific downstream genes associated with neuronal differentiation. Their involvement spans various stages of neurogenesis, including the determination of neural progenitor identity, cell cycle exit, and the acquisition of neuronal characteristics. Notably, Neurogenins influence the specification of different neuronal subtypes, contributi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Notch Signaling Pathway
The Notch signaling pathway is a highly Conserved sequence, conserved cell signaling system present in most animal, animals. Mammals possess four different Notch proteins, notch receptors, referred to as NOTCH1, NOTCH2, Notch 3, NOTCH3, and NOTCH4. The notch receptor is a single-pass Cell surface receptor, transmembrane receptor protein. It is a hetero-oligomer composed of a large extracellular portion, which associates in a calcium-dependent, non-covalent interaction with a smaller piece of the notch protein composed of a short extracellular region, a single transmembrane-pass, and a small intracellular region. Notch signaling promotes proliferative signaling during neurogenesis, and its activity is inhibited by NUMB (gene), Numb to promote neural differentiation. It plays a major role in the regulation of embryonic development. Notch signaling is dysregulated in many cancers, and faulty notch signaling is implicated in many diseases, including T-cell acute lymphoblastic leuke ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


FGF-10
Fibroblast growth factor 10 is a protein that in humans is encoded by the ''FGF10'' gene. It is a polypeptide of 208 amino acids. Human FGF10 gene is highly homologous (95.6%) to rat FGF10, where it was first discovered. Function The protein encoded by this gene is a member of the fibroblast growth factor (FGF) family. FGF family members possess broad mitogenic and cell survival activities, and are involved in a variety of biological processes, including embryonic development, cell growth, morphogenesis, tissue repair, tumor growth and invasion. Fibroblast growth factor 10 is a paracrine signaling molecule seen first in the limb bud and organogenesis development. FGF10 starts the developing of limbs and its involved in the branching of morphogenesis in multiple organs such as the lungs, skin, ear and salivary glands. During the limb development Tbx4/Tbx5 stimulate the production of FGF10 in the lateral plate mesoderm where it will create an epithelial-mesenchymal FGF signal wi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




NKX6-1
Homeobox protein Nkx-6.1 is a protein that in humans is encoded by the ''NKX6-1'' gene. Function In the pancreas, NKX6.1 is required for the development of beta cell Beta cells (β-cells) are specialized endocrine cells located within the pancreatic islets of Langerhans responsible for the production and release of insulin and amylin. Constituting ~50–70% of cells in human islets, beta cells play a vi ...s and is a potent bifunctional transcription regulator that binds to AT-rich sequences within the promoter region of target genes. References Further reading

* * * * * * {{gene-4-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


PTF1A
Pancreas transcription factor 1 subunit alpha is a protein that in humans is encoded by the ''PTF1A'' gene In biology, the word gene has two meanings. The Mendelian gene is a basic unit of heredity. The molecular gene is a sequence of nucleotides in DNA that is transcribed to produce a functional RNA. There are two types of molecular genes: protei .... Function This gene encodes a protein that is a component of the pancreas transcription factor 1 complex (PTF1) and is known to have a role in mammalian pancreatic development. The protein plays a role in determining whether cells allocated to the pancreatic buds continue towards pancreatic organogenesis or revert to duodenal fates. The protein is thought to be involved in the maintenance of exocrine pancreas-specific gene expression including elastase 1 and amylase. Mutations in this gene cause cerebellar agenesis and loss of expression is seen in ductal type pancreas cancers. References Further reading

* * * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]