X-fast Trie
In computer science, an x-fast trie is a data structure for storing integers from a bounded domain. It supports exact and predecessor or successor queries in time ''O''(log log ''M''), using ''O''(''n'' log ''M'') space, where ''n'' is the number of stored values and ''M'' is the maximum value in the domain. The structure was proposed by Dan Willard in 1982, along with the more complicated y-fast trie, as a way to improve the space usage of van Emde Boas trees, while retaining the ''O''(log log ''M'') query time. Structure An x-fast trie is a bitwise trie: a binary tree where each subtree stores values whose binary representations start with a common prefix. Each internal node is labeled with the common prefix of the values in its subtree and typically, the left child adds a 0 to the end of the prefix, while the right child adds a 1. The binary representation of an integer between 0 and ''M'' − 1 uses ⌈log2 ''M''⌉ bits, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Trie
In computer science, a trie (, ), also known as a digital tree or prefix tree, is a specialized search tree data structure used to store and retrieve strings from a dictionary or set. Unlike a binary search tree, nodes in a trie do not store their associated key. Instead, each node's ''position'' within the trie determines its associated key, with the connections between nodes defined by individual Character (computing), characters rather than the entire key. Tries are particularly effective for tasks such as autocomplete, spell checking, and IP routing, offering advantages over hash tables due to their prefix-based organization and lack of hash collisions. Every child node shares a common prefix (computer science), prefix with its parent node, and the root node represents the empty string. While basic trie implementations can be memory-intensive, various optimization techniques such as compression and bitwise representations have been developed to improve their efficiency. A n ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Binary Numeral System
A binary number is a number expressed in the base-2 numeral system or binary numeral system, a method for representing numbers that uses only two symbols for the natural numbers: typically "0" ( zero) and "1" ( one). A ''binary number'' may also refer to a rational number that has a finite representation in the binary numeral system, that is, the quotient of an integer by a power of two. The base-2 numeral system is a positional notation with a radix of 2. Each digit is referred to as a bit, or binary digit. Because of its straightforward implementation in digital electronic circuitry using logic gates, the binary system is used by almost all modern computers and computer-based devices, as a preferred system of use, over various other human techniques of communication, because of the simplicity of the language and the noise immunity in physical implementation. History The modern binary number system was studied in Europe in the 16th and 17th centuries by Thomas Harrio ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Patricia Trie
Patricia is a feminine given name of Latin origin. Derived from the Latin word '' patrician'', meaning 'noble', it is the feminine form of the masculine given name Patrick. Another well-known variant is Patrice. According to the US Social Security Administration records, the use of the name for newborns peaked at #3 from 1937 to 1943 in the United States, after which it dropped in popularity, sliding to #745 in 2016.Popularity of a NameSocial Security Administration''ssa.gov'', accessed June 26, 2017 From 1928 to 1967, the name was ranked among the top 11 female names. In Portuguese and Spanish-speaking Latin-American countries, the name Patrícia/Patricia is common as well, pronounced in Portuguese and in Spanish. In Catalan and Portuguese it is written Patrícia, while in Italy, Germany and Austria Patrizia is the form, pronounced in Italian and in German. In Polish, the variant is Patrycja, pronounced . It is also used in Romania, in 2009 being the 43rd most common nam ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Binary Search
In computer science, binary search, also known as half-interval search, logarithmic search, or binary chop, is a search algorithm that finds the position of a target value within a sorted array. Binary search compares the target value to the middle element of the array. If they are not equal, the half in which the target cannot lie is eliminated and the search continues on the remaining half, again taking the middle element to compare to the target value, and repeating this until the target value is found. If the search ends with the remaining half being empty, the target is not in the array. Binary search runs in Time complexity#Logarithmic time, logarithmic time in the Best, worst and average case, worst case, making O(\log n) comparisons, where n is the number of elements in the array. Binary search is faster than linear search except for small arrays. However, the array must be sorted first to be able to apply binary search. There are specialized data structures designed fo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Associative Array
In computer science, an associative array, key-value store, map, symbol table, or dictionary is an abstract data type that stores a collection of (key, value) pairs, such that each possible key appears at most once in the collection. In mathematical terms, an associative array is a function with ''finite'' domain. It supports 'lookup', 'remove', and 'insert' operations. The dictionary problem is the classic problem of designing efficient data structures that implement associative arrays. The two major solutions to the dictionary problem are hash tables and search trees..Dietzfelbinger, M., Karlin, A., Mehlhorn, K., Meyer auf der Heide, F., Rohnert, H., and Tarjan, R. E. 1994"Dynamic Perfect Hashing: Upper and Lower Bounds". SIAM J. Comput. 23, 4 (Aug. 1994), 738-761. http://portal.acm.org/citation.cfm?id=182370 It is sometimes also possible to solve the problem using directly addressed arrays, binary search trees, or other more specialized structures. Many programmin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cuckoo Hashing
Cuckoo hashing is a scheme in computer programming for resolving hash collisions of values of hash functions in a table, with worst-case constant lookup time. The name derives from the behavior of some species of cuckoo, where the cuckoo chick pushes the other eggs or young out of the nest when it hatches in a variation of the behavior referred to as brood parasitism; analogously, inserting a new key into a cuckoo hashing table may push an older key to a different location in the table. History Cuckoo hashing was first described by Rasmus Pagh and Flemming Friche Rodler in a 2001 conference paper. The paper was awarded the European Symposium on Algorithms Test-of-Time award in 2020. Operations Cuckoo hashing is a form of open addressing in which each non-empty cell of a hash table contains a key or key–value pair. A hash function is used to determine the location for each key, and its presence in the table (or the value associated with it) can be found by examining that c ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dynamic Perfect Hashing
In computer science, dynamic perfect hashing is a programming technique for resolving collisions in a hash table data structure.Fredman, M. L., Komlós, J., and Szemerédi, E. 1984. Storing a Sparse Table with 0(1) Worst Case Access Time. J. ACM 31, 3 (Jun. 1984), 538-544 http://portal.acm.org/citation.cfm?id=1884#Dietzfelbinger, M., Karlin, A., Mehlhorn, K., Meyer auf der Heide, F., Rohnert, H., and Tarjan, R. E. 1994"Dynamic Perfect Hashing: Upper and Lower Bounds". SIAM J. Comput. 23, 4 (Aug. 1994), 738-761. http://portal.acm.org/citation.cfm?id=182370 While more memory-intensive than its hash table counterparts, this technique is useful for situations where fast queries, insertions, and deletions must be made on a large set of elements. Details Static case FKS Scheme The problem of optimal static hashing was first solved in general by Fredman, Komlós and Szemerédi. In their 1984 paper, they detail a two-tiered hash table scheme in which each bucket of the (first-level ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hash Table
In computer science, a hash table is a data structure that implements an associative array, also called a dictionary or simply map; an associative array is an abstract data type that maps Unique key, keys to Value (computer science), values. A hash table uses a hash function to compute an ''index'', also called a ''hash code'', into an array of ''buckets'' or ''slots'', from which the desired value can be found. During lookup, the key is hashed and the resulting hash indicates where the corresponding value is stored. A map implemented by a hash table is called a hash map. Most hash table designs employ an Perfect hash function, imperfect hash function. Hash collision, Hash collisions, where the hash function generates the same index for more than one key, therefore typically must be accommodated in some way. In a well-dimensioned hash table, the average time complexity for each lookup is independent of the number of elements stored in the table. Many hash table designs also ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Doubly Linked List
In computer science, a doubly linked list is a linked data structure that consists of a set of sequentially linked records called nodes. Each node contains three fields: two link fields (references to the previous and to the next node in the sequence of nodes) and one data field. The beginning and ending nodes' previous and next links, respectively, point to some kind of terminator, typically a sentinel node or null, to facilitate traversal of the list. If there is only one sentinel node, then the list is circularly linked via the sentinel node. It can be conceptualized as two singly linked lists formed from the same data items, but in opposite sequential orders. The two node links allow traversal of the list in either direction. While adding or removing a node in a doubly linked list requires changing more links than the same operations on a singly linked list, the operations are simpler and potentially more efficient (for nodes other than first nodes) because there is no n ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Binary Tree
In computer science, a binary tree is a tree data structure in which each node has at most two children, referred to as the ''left child'' and the ''right child''. That is, it is a ''k''-ary tree with . A recursive definition using set theory is that a binary tree is a triple , where ''L'' and ''R'' are binary trees or the empty set and ''S'' is a singleton (a single–element set) containing the root. From a graph theory perspective, binary trees as defined here are arborescences. A binary tree may thus be also called a bifurcating arborescence, a term which appears in some early programming books before the modern computer science terminology prevailed. It is also possible to interpret a binary tree as an undirected, rather than directed graph, in which case a binary tree is an ordered, rooted tree. Some authors use rooted binary tree instead of ''binary tree'' to emphasize the fact that the tree is rooted, but as defined above, a binary tree is always rooted. In ma ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dan Willard
Dan Edward Willard (September 19, 1948 – January 21, 2023) was an American computer scientist and logician, and a professor of computer science at the University at Albany. Education and career Willard did his undergraduate studies in mathematics at Stony Brook University, graduating in 1970. He went on to graduate studies in mathematics at Harvard University, earning a master's degree in 1972 and a doctorate in 1978. After leaving Harvard, he worked at Bell Labs for four years before joining the Albany faculty in 1983.Curriculum vitae , accessed 2013-06-04. Contributions Although trained as a mathematician and employed as a computer scientist, Willard's most highly cited publication is ine ...
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |