HOME





Weak Derivative
In mathematics, a weak derivative is a generalization of the concept of the derivative of a function (''strong derivative'') for functions not assumed differentiable, but only integrable, i.e., to lie in the L''p'' space L^1( ,b. The method of integration by parts holds that for smooth functions u and \varphi we have :\begin \int_a^b u(x) \varphi'(x) \, dx & = \Big (x) \varphi(x)\Biga^b - \int_a^b u'(x) \varphi(x) \, dx. \\ pt \end A function ''u''' being the weak derivative of ''u'' is essentially defined by the requirement that this equation must hold for all smooth functions \varphi vanishing at the boundary points (\varphi(a)=\varphi(b)=0). Definition Let u be a function in the Lebesgue space L^1( ,b. We say that v in L^1( ,b is a weak derivative of u if :\int_a^b u(t)\varphi'(t) \, dt=-\int_a^b v(t)\varphi(t) \, dt for ''all'' infinitely differentiable functions \varphi with \varphi(a)=\varphi(b)=0. Generalizing to n dimensions, if u and v are in the s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Indicator Function
In mathematics, an indicator function or a characteristic function of a subset of a set is a function that maps elements of the subset to one, and all other elements to zero. That is, if is a subset of some set , then the indicator function of is the function \mathbf_A defined by \mathbf_\!(x) = 1 if x \in A, and \mathbf_\!(x) = 0 otherwise. Other common notations are and \chi_A. The indicator function of is the Iverson bracket of the property of belonging to ; that is, \mathbf_(x) = \left x\in A\ \right For example, the Dirichlet function is the indicator function of the rational numbers as a subset of the real numbers. Definition Given an arbitrary set , the indicator function of a subset of is the function \mathbf_A \colon X \mapsto \ defined by \operatorname\mathbf_A\!( x ) = \begin 1 & \text x \in A \\ 0 & \text x \notin A \,. \end The Iverson bracket provides the equivalent notation \left x\in A\ \right/math> or that can be used instead of \mathbf_\ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Functional Analysis
Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (for example, Inner product space#Definition, inner product, Norm (mathematics)#Definition, norm, or Topological space#Definitions, topology) and the linear transformation, linear functions defined on these spaces and suitably respecting these structures. The historical roots of functional analysis lie in the study of function space, spaces of functions and the formulation of properties of transformations of functions such as the Fourier transform as transformations defining, for example, continuous function, continuous or unitary operator, unitary operators between function spaces. This point of view turned out to be particularly useful for the study of differential equations, differential and integral equations. The usage of the word ''functional (mathematics), functional'' as a noun goes back to the calculus of v ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Generalized Functions
In mathematics, generalized functions are objects extending the notion of functions on real or complex numbers. There is more than one recognized theory, for example the theory of distributions. Generalized functions are especially useful for treating discontinuous functions more like smooth functions, and describing discrete physical phenomena such as point charges. They are applied extensively, especially in physics and engineering. Important motivations have been the technical requirements of theories of partial differential equations and group representations. A common feature of some of the approaches is that they build on operator aspects of everyday, numerical functions. The early history is connected with some ideas on operational calculus, and some contemporary developments are closely related to Mikio Sato's algebraic analysis. Some early history In the mathematics of the nineteenth century, aspects of generalized function theory appeared, for example in the def ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Weyl's Lemma (Laplace Equation)
In mathematics, Weyl's lemma, named after Hermann Weyl, states that every weak solution of Laplace's equation is a smooth function, smooth solution. This contrasts with the wave equation, for example, which has weak solutions that are not smooth solutions. Weyl's lemma is a special case of elliptic PDE, elliptic or hypoelliptic, hypoelliptic regularity. Statement of the lemma Let \Omega be an open set, open subset of n-dimensional Euclidean space \mathbb^, and let \Delta denote the usual Laplace operator. Weyl's lemma states that if a locally integrable function u \in L_^(\Omega) is a weak solution of Laplace's equation, in the sense that :\int_\Omega u(x) \, \Delta \varphi (x) \, dx = 0 for every Spaces of test functions and distributions, test function (smooth function, smooth function with compact support) \varphi \in C_c^\infty(\Omega), then (up to redefinition on a set of measure zero) u \in C^(\Omega) is smooth and satisfies \Delta u = 0 pointwise in \Omega. This result i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Subderivative
In mathematics, the subderivative (or subgradient) generalizes the derivative to convex functions which are not necessarily differentiable. The set of subderivatives at a point is called the subdifferential at that point. Subderivatives arise in convex analysis, the study of convex functions, often in connection to convex optimization. Let f:I \to \mathbb be a real-valued convex function defined on an open interval of the real line. Such a function need not be differentiable at all points: For example, the absolute value function f(x)=, x, is non-differentiable when x=0. However, as seen in the graph on the right (where f(x) in blue has non-differentiable kinks similar to the absolute value function), for any x_0 in the domain of the function one can draw a line which goes through the point (x_0,f(x_0)) and which is everywhere either touching or below the graph of ''f''. The slope of such a line is called a ''subderivative''. Definition Rigorously, a ''subderivative'' of a c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Functional Analysis
Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (for example, Inner product space#Definition, inner product, Norm (mathematics)#Definition, norm, or Topological space#Definitions, topology) and the linear transformation, linear functions defined on these spaces and suitably respecting these structures. The historical roots of functional analysis lie in the study of function space, spaces of functions and the formulation of properties of transformations of functions such as the Fourier transform as transformations defining, for example, continuous function, continuous or unitary operator, unitary operators between function spaces. This point of view turned out to be particularly useful for the study of differential equations, differential and integral equations. The usage of the word ''functional (mathematics), functional'' as a noun goes back to the calculus of v ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Weak Solution
In mathematics, a weak solution (also called a generalized solution) to an ordinary or partial differential equation is a function for which the derivatives may not all exist but which is nonetheless deemed to satisfy the equation in some precisely defined sense. There are many different definitions of weak solution, appropriate for different classes of equations. One of the most important is based on the notion of distributions. Avoiding the language of distributions, one starts with a differential equation and rewrites it in such a way that no derivatives of the solution of the equation show up (the new form is called the weak formulation, and the solutions to it are called weak solutions). Somewhat surprisingly, a differential equation may have solutions that are not differentiable, and the weak formulation allows one to find such solutions. Weak solutions are important because many differential equations encountered in modelling real-world phenomena do not admit of suff ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Equivalence Classes
In mathematics, when the elements of some set S have a notion of equivalence (formalized as an equivalence relation), then one may naturally split the set S into equivalence classes. These equivalence classes are constructed so that elements a and b belong to the same equivalence class if, and only if, they are equivalent. Formally, given a set S and an equivalence relation \sim on S, the of an element a in S is denoted /math> or, equivalently, to emphasize its equivalence relation \sim, and is defined as the set of all elements in S with which a is \sim-related. The definition of equivalence relations implies that the equivalence classes form a partition of S, meaning, that every element of the set belongs to exactly one equivalence class. The set of the equivalence classes is sometimes called the quotient set or the quotient space of S by \sim, and is denoted by S /. When the set S has some structure (such as a group operation or a topology) and the equivalence relat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Singular Measure
In mathematics, two positive (or signed or complex) measures \mu and \nu defined on a measurable space (\Omega, \Sigma) are called singular if there exist two disjoint measurable sets A, B \in \Sigma whose union is \Omega such that \mu is zero on all measurable subsets of B while \nu is zero on all measurable subsets of A. This is denoted by \mu \perp \nu. A refined form of Lebesgue's decomposition theorem decomposes a singular measure into a singular continuous measure and a discrete measure. See below for examples. Examples on R''n'' As a particular case, a measure defined on the Euclidean space \R^n is called ''singular'', if it is singular with respect to the Lebesgue measure on this space. For example, the Dirac delta function is a singular measure. Example. A discrete measure. The Heaviside step function on the real line, H(x) \ \stackrel \begin 0, & x 0 but \delta_0(U) = 0. Example. A singular continuous measure. The Cantor distribution has a cumulative dist ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cantor Distribution
The Cantor distribution is the probability distribution whose cumulative distribution function is the Cantor function. This distribution has neither a probability density function nor a probability mass function, since although its cumulative distribution function is a continuous function, the distribution is not absolutely continuous with respect to Lebesgue measure, nor does it have any point-masses. It is thus neither a discrete nor an absolutely continuous probability distribution, nor is it a mixture of these. Rather it is an example of a singular distribution. Its cumulative distribution function is continuous everywhere but horizontal almost everywhere, so is sometimes referred to as the Devil's staircase, although that term has a more general meaning. Characterization The support of the Cantor distribution is the Cantor set, itself the intersection of the (countably infinitely many) sets: : \begin C_0 = & ,1\\ pt C_1 = & ,1/3cup /3,1\\ pt C_2 = & ,1/9c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]