HOME





Vera T. Sós
Vera Turán Sós (11 September 1930 – 22 March 2023) was a Hungarian mathematician who specialized in number theory and combinatorics. She was a student and close collaborator of both Paul Erdős and Alfréd Rényi. She also collaborated frequently with her husband Pál Turán, an analyst, number theorist, and combinatorist. Until 1987, she worked at the Department of Analysis at the Eötvös Loránd University, Budapest. Afterwards, she was employed by the Alfréd Rényi Institute of Mathematics. She was elected a corresponding member (1985) and member (1990) of the Hungarian Academy of Sciences. In 1997, Sós was awarded the Széchenyi Prize. One of her contributions is the Kővári–Sós–Turán theorem concerning the maximum possible number of edges in a bipartite graph that does not contain certain complete subgraphs. Another is the following so-called friendship theorem proved with Paul Erdős and Alfréd Rényi: if, in a finite graph, any two vertices have exactly ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Budapest
Budapest is the Capital city, capital and List of cities and towns of Hungary, most populous city of Hungary. It is the List of cities in the European Union by population within city limits, tenth-largest city in the European Union by population within city limits and the List of cities and towns on the river Danube, second-largest city on the river Danube. The estimated population of the city in 2025 is 1,782,240. This includes the city's population and surrounding suburban areas, over a land area of about . Budapest, which is both a List of cities and towns of Hungary, city and Counties of Hungary, municipality, forms the centre of the Budapest metropolitan area, which has an area of and a population of 3,019,479. It is a primate city, constituting 33% of the population of Hungary. The history of Budapest began when an early Celts, Celtic settlement transformed into the Ancient Rome, Roman town of Aquincum, the capital of Pannonia Inferior, Lower Pannonia. The Hungarian p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Zarankiewicz Problem
The Zarankiewicz problem, an unsolved problem in mathematics, asks for the largest possible number of edges in a bipartite graph that has a given number of vertices and has no complete bipartite graph, complete bipartite subgraphs of a given size.. Reprint of 1978 Academic Press edition, . It belongs to the field of extremal graph theory, a branch of combinatorics, and is named after the Polish mathematician Kazimierz Zarankiewicz, who proposed several special cases of the problem in 1951. Problem statement A bipartite graph G=(U\cup V,E) consists of two disjoint sets of vertex (graph theory), vertices U and V, and a set of edge (graph theory), edges each of which connects a vertex in U to a vertex in V. No two edges can both connect the same pair of vertices. A complete bipartite graph is a bipartite graph in which every pair of a vertex from U and a vertex from V is connected to each other. A complete bipartite graph in which U has s vertices and V has t vertices is denoted K_. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Order Of Merit Of The Republic Of Hungary
The Hungarian Order of Merit () is the fourth highest Order (honour), State Order of Hungary. Founded in 1991, the order is a revival of an original order founded in 1946 and abolished in 1949. Its origins, however, can be traced to the Order of Merit of the Kingdom of Hungary which existed from 1922 until 1946. In 2011 its official name changed from Order of Merit of the Republic of Hungary to Hungarian Order of Merit in accordance with the new Hungarian Constitution. It is awarded in either civilian or military divisions. Since 2011, the Hungarian Order of Saint Stephen is the highest Order (honour), State honour of Hungary. Grades The civil division is divided into six grades, whilst the military division is divided into five. The highest grade, the Grand Cross with Chain, is exclusive to the civilian division and is only awarded to heads of state and the President of Hungary ''Ex officio member, ex-officio''. The maximum number of awards which are permitted to be made to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


András Hajnal
András Hajnal (May 13, 1931 – July 30, 2016) was a professor of mathematics at Rutgers University and a member of the Hungarian Academy of Sciences known for his work in set theory and combinatorics. Biography Hajnal was born on 13 May 1931,Curriculum vitae
in , . He received his university diploma (M.Sc. degree) in 1953 from the Eötvös Loránd University, his

Paul Turán
Paul may refer to: People * Paul (given name), a given name, including a list of people * Paul (surname), a list of people * Paul the Apostle, an apostle who wrote many of the books of the New Testament * Ray Hildebrand, half of the singing duo Paul & Paula * Paul Stookey, one-third of the folk music trio Peter, Paul and Mary * Billy Paul, stage name of American soul singer Paul Williams (1934–2016) * Vinnie Paul, drummer for American Metal band Pantera * Paul Avril, pseudonym of Édouard-Henri Avril (1849–1928), French painter and commercial artist * Paul, pen name under which Walter Scott wrote ''Paul's letters to his Kinsfolk'' in 1816 * Jean Paul, pen name of Johann Paul Friedrich Richter (1763–1825), German Romantic writer Places * Paul, Cornwall, a village in the civil parish of Penzance, United Kingdom *Paul (civil parish), Cornwall, United Kingdom * Paul, Alabama, United States, an unincorporated community *Paul, Idaho, United States, a city *Paul, Nebraska, United ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Physics
Physics is the scientific study of matter, its Elementary particle, fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which relates to the order of nature, or, in other words, to the regular succession of events." It is one of the most fundamental scientific disciplines. "Physics is one of the most fundamental of the sciences. Scientists of all disciplines use the ideas of physics, including chemists who study the structure of molecules, paleontologists who try to reconstruct how dinosaurs walked, and climatologists who study how human activities affect the atmosphere and oceans. Physics is also the foundation of all engineering and technology. No engineer could design a flat-screen TV, an interplanetary spacecraft, or even a better mousetrap without first understanding the basic laws of physics. (...) You will come to see physics as a towering achievement of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tibor Gallai
Tibor Gallai (born Tibor Grünwald, 15 July 1912 – 2 January 1992) was a Hungarian mathematician. He worked in combinatorics, especially in graph theory, and was a lifelong friend and collaborator of Paul Erdős. He was a student of Dénes Kőnig and an advisor of László Lovász. He was a corresponding member of the Hungarian Academy of Sciences (1991). His main results The Edmonds–Gallai decomposition theorem, which was proved independently by Gallai and Jack Edmonds, describes finite graphs from the point of view of matchings. Gallai also proved, with Milgram, Dilworth's theorem in 1947, but as they hesitated to publish the result, Dilworth independently discovered and published it.P. ErdősIn memory of Tibor Gallai ''Combinatorica'', 12(1992), 373–374. Gallai was the first to prove the higher-dimensional version of van der Waerden's theorem. With Paul Erdős he gave a necessary and sufficient condition for a sequence to be the degree sequence of a grap ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Stanisław Świerczkowski
Stanisław (Stash) Świerczkowski (16 July 1932 – 30 September 2015) was a Polish mathematician famous for his solutions to two iconic problems posed by Hugo Steinhaus: the three-gap theorem and the non-tetratorus theorem. Early life and education Stanisław (Stash) Świerczkowski was born in Toruń, Poland. His parents were divorced during his infancy. When war broke out his father was captured in Soviet-controlled Poland and murdered in the 1940 Katyń Massacre. He belonged to the Polish nobility; Świerczkowski's mother belonged to the upper middle class and would have probably suffered deportation and murder by the Nazis. However she had German connections and was able to gain relatively privileged class 2 Volksliste citizenship. At the end of the war Świerczkowski's mother was forced into hiding near Toruń until she was confident that she could win exoneration from the Soviet-controlled government for her Volksliste status and be rehabilitated as a Polish citizen. Mean ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hugo Steinhaus
Hugo Dyonizy Steinhaus ( , ; 14 January 1887 – 25 February 1972) was a Polish mathematician and educator. Steinhaus obtained his PhD under David Hilbert at Göttingen University in 1911 and later became a professor at the Jan Kazimierz University in Lwów (now Lviv, Ukraine), where he helped establish what later became known as the Lwów School of Mathematics. He is credited with "discovering" mathematician Stefan Banach, with whom he gave a notable contribution to functional analysis through the Banach–Steinhaus theorem. After World War II Steinhaus played an important part in the establishment of the mathematics department at Wrocław University and in the revival of Polish mathematics from the destruction of the war. Author of around 170 scientific articles and books, Steinhaus has left his legacy and contribution in many branches of mathematics, such as functional analysis, geometry, mathematical logic, and trigonometry. Notably he is regarded as one of the early founde ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Three-gap Theorem
In mathematics, the three-gap theorem, three-distance theorem, or Steinhaus conjecture states that if one places points on a circle, at angles of , , , ... from the starting point, then there will be at most three distinct distances between pairs of points in adjacent positions around the circle. When there are three distances, the largest of the three always equals the sum of the other two. Unless is a rational multiple of , there will also be at least two distinct distances. This result was conjectured by Hugo Steinhaus, and proved in the 1950s by Vera T. Sós, , and Stanisław Świerczkowski; more proofs were added by others later. Applications of the three-gap theorem include the study of plant growth and musical tuning systems, and the theory of light reflection within a mirrored square. Statement The three-gap theorem can be stated geometrically in terms of points on a circle. In this form, it states that if one places n points on a circle, at angles of \theta, 2\theta, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Finite Graph
In discrete mathematics, particularly in graph theory, a graph is a structure consisting of a set of objects where some pairs of the objects are in some sense "related". The objects are represented by abstractions called '' vertices'' (also called ''nodes'' or ''points'') and each of the related pairs of vertices is called an ''edge'' (also called ''link'' or ''line''). Typically, a graph is depicted in diagrammatic form as a set of dots or circles for the vertices, joined by lines or curves for the edges. The edges may be directed or undirected. For example, if the vertices represent people at a party, and there is an edge between two people if they shake hands, then this graph is undirected because any person ''A'' can shake hands with a person ''B'' only if ''B'' also shakes hands with ''A''. In contrast, if an edge from a person ''A'' to a person ''B'' means that ''A'' owes money to ''B'', then this graph is directed, because owing money is not necessarily reciprocated. Gra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Friendship Graph
In the mathematical field of graph theory, the friendship graph (or Dutch windmill graph or -fan) is a planar, undirected graph with vertices and edges. The friendship graph can be constructed by joining copies of the cycle graph with a common vertex, which becomes a universal vertex for the graph. By construction, the friendship graph is isomorphic to the windmill graph . It is unit distance with girth 3, diameter 2 and radius 1. The graph is isomorphic to the butterfly graph. Friendship graphs are generalized by the triangular cactus graphs. Friendship theorem The friendship theorem of states that the finite graphs with the property that every two vertices have exactly one neighbor in common are exactly the friendship graphs. Informally, if a group of people has the property that every pair of people has exactly one friend in common, then there must be one person who is a friend to all the others. However, for infinite graphs, there can be many different graphs ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]