HOME
*



picture info

Ultraparallel Theorem
In hyperbolic geometry, two lines may intersect, be ultraparallel, or be limiting parallel. The ultraparallel theorem states that every pair of (distinct) ultraparallel lines has a unique common perpendicular (a hyperbolic line which is perpendicular to both lines). Hilbert's construction Let r and s be two ultraparallel lines. From any two distinct points A and C on s draw AB and CB' perpendicular to r with B and B' on r. If it happens that AB = CB', then the desired common perpendicular joins the midpoints of AC and BB' (by the symmetry of the Saccheri quadrilateral ACB'B). If not, we may suppose AB < CB' without loss of generality. Let E be a point on the line s on the opposite side of A from C. Take A' on CB' so that A'B' = AB. Through A' draw a line s' (A'E') on the side closer to E, so that the angle B'A'E' is the same as angle BAE. Then s' meets s in an ordinary point D'. Construct a point D on ray AE so that AD = A'D'. Then D' ≠ D. They are the same distance from r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ultraparallel
In mathematics, hyperbolic geometry (also called Lobachevskian geometry or Bolyai–Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with: :For any given line ''R'' and point ''P'' not on ''R'', in the plane containing both line ''R'' and point ''P'' there are at least two distinct lines through ''P'' that do not intersect ''R''. (Compare the above with Playfair's axiom, the modern version of Euclid's parallel postulate.) Hyperbolic plane geometry is also the geometry of pseudospherical surfaces, surfaces with a constant negative Gaussian curvature. Saddle surfaces have negative Gaussian curvature in at least some regions, where they locally resemble the hyperbolic plane. A modern use of hyperbolic geometry is in the theory of special relativity, particularly the Minkowski model. When geometers first realised they were working with something other than the standard Euclidean geometry, they described their geo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Articles Containing Proofs
Article often refers to: * Article (grammar), a grammatical element used to indicate definiteness or indefiniteness * Article (publishing), a piece of nonfictional prose that is an independent part of a publication Article may also refer to: Government and law * Article (European Union), articles of treaties of the European Union * Articles of association, the regulations governing a company, used in India, the UK and other countries * Articles of clerkship, the contract accepted to become an articled clerk * Articles of Confederation, the predecessor to the current United States Constitution *Article of Impeachment, a formal document and charge used for impeachment in the United States * Articles of incorporation, for corporations, U.S. equivalent of articles of association * Articles of organization, for limited liability organizations, a U.S. equivalent of articles of association Other uses * Article, an HTML element, delimited by the tags and * Article of clothing, an i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Wanda Szmielew
Wanda Szmielew née Montlak (5 April 1918 – 27 August 1976) was a Polish mathematical logician who first proved the decidability of the first-order theory of abelian groups. Life Wanda Montlak was born on 5 April 1918 in Warsaw. She completed high school in 1935 and married, taking the name Szmielew. In the same year she entered the University of Warsaw, where she studied logic under Adolf Lindenbaum, Jan Łukasiewicz, Kazimierz Kuratowski, and Alfred Tarski. Her research at this time included work on the axiom of choice, but it was interrupted by the 1939 Invasion of Poland. Szmielew became a surveyor during World War II, during which time she continued her research on her own, developing a decision procedure based on quantifier elimination for the theory of abelian groups. She also taught for the Polish underground. After the liberation of Poland, Szmielew took a position at the University of Łódź, which was founded in May 1945. In 1947, she published her paper on t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Karol Borsuk
Karol Borsuk (May 8, 1905 – January 24, 1982) was a Polish mathematician. His main interest was topology, while he obtained significant results also in functional analysis. Borsuk introduced the theory of '' absolute retracts'' (ARs) and ''absolute neighborhood retracts'' (ANRs), and the cohomotopy groups, later called Borsuk– Spanier cohomotopy groups. He also founded shape theory. He has constructed various beautiful examples of topological spaces, e.g. an acyclic, 3-dimensional continuum which admits a fixed point free homeomorphism onto itself; also 2-dimensional, contractible polyhedra which have no free edge. His topological and geometric conjectures and themes stimulated research for more than half a century; in particular, his open problems stimulated the infinite-dimensional topology. Borsuk received his master's degree and doctorate from Warsaw University in 1927 and 1930, respectively; his PhD thesis advisor was Stefan Mazurkiewicz. He was a member of the Polish ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quadrilateral
In geometry a quadrilateral is a four-sided polygon, having four edges (sides) and four corners (vertices). The word is derived from the Latin words ''quadri'', a variant of four, and ''latus'', meaning "side". It is also called a tetragon, derived from greek "tetra" meaning "four" and "gon" meaning "corner" or "angle", in analogy to other polygons (e.g. pentagon). Since "gon" means "angle", it is analogously called a quadrangle, or 4-angle. A quadrilateral with vertices A, B, C and D is sometimes denoted as \square ABCD. Quadrilaterals are either simple (not self-intersecting), or complex (self-intersecting, or crossed). Simple quadrilaterals are either convex or concave. The interior angles of a simple (and planar) quadrilateral ''ABCD'' add up to 360 degrees of arc, that is :\angle A+\angle B+\angle C+\angle D=360^. This is a special case of the ''n''-gon interior angle sum formula: ''S'' = (''n'' − 2) × 180°. All non-self-crossing quadrilaterals tile the plan ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Circle
A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. Equivalently, it is the curve traced out by a point that moves in a plane so that its distance from a given point is constant. The distance between any point of the circle and the centre is called the radius. Usually, the radius is required to be a positive number. A circle with r=0 (a single point) is a degenerate case. This article is about circles in Euclidean geometry, and, in particular, the Euclidean plane, except where otherwise noted. Specifically, a circle is a simple closed curve that divides the plane into two regions: an interior and an exterior. In everyday use, the term "circle" may be used interchangeably to refer to either the boundary of the figure, or to the whole figure including its interior; in strict technical usage, the circle is only the boundary and the whole figure is called a '' disc''. A circle may also be defined as a specia ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tangent Line
In geometry, the tangent line (or simply tangent) to a plane curve at a given point is the straight line that "just touches" the curve at that point. Leibniz defined it as the line through a pair of infinitely close points on the curve. More precisely, a straight line is said to be a tangent of a curve at a point if the line passes through the point on the curve and has slope , where ''f'' is the derivative of ''f''. A similar definition applies to space curves and curves in ''n''-dimensional Euclidean space. As it passes through the point where the tangent line and the curve meet, called the point of tangency, the tangent line is "going in the same direction" as the curve, and is thus the best straight-line approximation to the curve at that point. The tangent line to a point on a differentiable curve can also be thought of as a '' tangent line approximation'', the graph of the affine function that best approximates the original function at the given point. Similarly, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pole And Polar
In geometry, a pole and polar are respectively a point and a line that have a unique reciprocal relationship with respect to a given conic section. Polar reciprocation in a given circle is the transformation of each point in the plane into its polar line and each line in the plane into its pole. Properties Pole and polar have several useful properties: * If a point P lies on the line ''l'', then the pole L of the line ''l'' lies on the polar ''p'' of point P. * If a point P moves along a line ''l'', its polar ''p'' rotates about the pole L of the line ''l''. * If two tangent lines can be drawn from a pole to the conic section, then its polar passes through both tangent points. * If a point lies on the conic section, its polar is the tangent through this point to the conic section. * If a point P lies on its own polar line, then P is on the conic section. * Each line has, with respect to a non-degenerated conic section, exactly one pole. Special case of circles The pole ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Chord (geometry)
A chord of a circle is a straight line segment whose endpoints both lie on a circular arc. The infinite line extension of a chord is a secant line, or just ''secant''. More generally, a chord is a line segment joining two points on any curve, for instance, an ellipse. A chord that passes through a circle's center point is the circle's diameter. The word ''chord'' is from the Latin ''chorda'' meaning ''bowstring''. In circles Among properties of chords of a circle are the following: # Chords are equidistant from the center if and only if their lengths are equal. # Equal chords are subtended by equal angles from the center of the circle. # A chord that passes through the center of a circle is called a diameter and is the longest chord of that specific circle. # If the line extensions (secant lines) of chords AB and CD intersect at a point P, then their lengths satisfy AP·PB = CP·PD ( power of a point theorem). In conics The midpoints of a set of parallel chords of a c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hyperbolic Motion
In geometry, hyperbolic motions are isometric automorphisms of a hyperbolic space. Under composition of mappings, the hyperbolic motions form a continuous group. This group is said to characterize the hyperbolic space. Such an approach to geometry was cultivated by Felix Klein in his Erlangen program. The idea of reducing geometry to its characteristic group was developed particularly by Mario Pieri in his reduction of the primitive notions of geometry to merely point and ''motion''. Hyperbolic motions are often taken from inversive geometry: these are mappings composed of reflections in a line or a circle (or in a hyperplane or a hypersphere for hyperbolic spaces of more than two dimensions). To distinguish the hyperbolic motions, a particular line or circle is taken as the absolute. The proviso is that the absolute must be an invariant set of all hyperbolic motions. The absolute divides the plane into two connected components, and hyperbolic motions must ''not'' permu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hyperbolic Geometry
In mathematics, hyperbolic geometry (also called Lobachevskian geometry or Bolyai–Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with: :For any given line ''R'' and point ''P'' not on ''R'', in the plane containing both line ''R'' and point ''P'' there are at least two distinct lines through ''P'' that do not intersect ''R''. (Compare the above with Playfair's axiom, the modern version of Euclid's parallel postulate.) Hyperbolic plane geometry is also the geometry of pseudospherical surfaces, surfaces with a constant negative Gaussian curvature. Saddle surfaces have negative Gaussian curvature in at least some regions, where they locally resemble the hyperbolic plane. A modern use of hyperbolic geometry is in the theory of special relativity, particularly the Minkowski model. When geometers first realised they were working with something other than the standard Euclidean geometry, they described their ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]