Transuranic Waste
Transuranic waste (TRU) is stated by U.S. regulations, and independent of state or origin, to be waste which has been contaminated with alpha emitting transuranic radionuclides possessing half-lives greater than 20 years and in concentrations greater than 100 nCi/g (3.7 MBq/kg). Elements having atomic numbers greater than that of uranium are called transuranic. Elements within TRU are typically man-made and are known to contain americium-241 and several isotopes of plutonium. Because of the elements' longer half-lives Half-life is a mathematical and scientific description of exponential or gradual decay. Half-life, half life or halflife may also refer to: Film * ''Half-Life'' (film), a 2008 independent film by Jennifer Phang * '' Half Life: A Parable for t ..., TRU is disposed of more cautiously than low level waste and intermediate level waste. In the U.S. it is a byproduct of weapons production, nuclear research and power production, and consists of protec ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Alpha Decay
Alpha decay or α-decay is a type of radioactive decay in which an atomic nucleus emits an alpha particle (helium nucleus). The parent nucleus transforms or "decays" into a daughter product, with a mass number that is reduced by four and an atomic number that is reduced by two. An alpha particle is identical to the nucleus of a helium-4 atom, which consists of two protons and two neutrons. It has a charge of and a mass of , and is represented as ^_\alpha. For example, uranium-238 undergoes alpha decay to form thorium-234. While alpha particles have a charge , this is not usually shown because a nuclear equation describes a nuclear reaction without considering the electrons – a convention that does not imply that the nuclei necessarily occur in neutral atoms. Alpha decay typically occurs in the heaviest nuclides. Theoretically, it can occur only in nuclei somewhat heavier than nickel (element 28), where the overall binding energy per nucleon is no longer a maximum a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Transuranic
The transuranium (or transuranic) elements are the chemical elements with atomic number greater than 92, which is the atomic number of uranium. All of them are radioactively unstable and decay into other elements. Except for neptunium and plutonium, which have been found in trace amounts in nature, none occur naturally on Earth and they are synthetic. Overview Of the elements with atomic numbers 1 to 92, most can be found in nature, having stable isotopes (such as oxygen) or very long-lived radioisotopes (such as uranium), or existing as common decay products of the decay of uranium and thorium (such as radon). The exceptions are technetium, promethium, astatine, and francium; all four occur in nature, but only in very minor branches of the uranium and thorium decay chains, and thus all save francium were first discovered by synthesis in the laboratory rather than in nature. All elements with higher atomic numbers have been first discovered in the laboratory, with neptunium a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Radionuclides
A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that has excess numbers of either neutrons or protons, giving it excess nuclear energy, and making it unstable. This excess energy can be used in one of three ways: emitted from the nucleus as gamma radiation; transferred to one of its electrons to release it as a conversion electron; or used to create and emit a new particle (alpha particle or beta particle) from the nucleus. During those processes, the radionuclide is said to undergo radioactive decay. These emissions are considered ionizing radiation because they are energetic enough to liberate an electron from another atom. The radioactive decay can produce a stable nuclide or will sometimes produce a new unstable radionuclide which may undergo further decay. Radioactive decay is a random process at the level of single atoms: it is impossible to predict when one particular atom will decay. However, for a collection of atoms of a single nucl ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Half-lives
Half-life is a mathematical and scientific description of exponential or gradual decay. Half-life, half life or halflife may also refer to: Film * ''Half-Life'' (film), a 2008 independent film by Jennifer Phang * '' Half Life: A Parable for the Nuclear Age'', a 1985 Australian documentary film Literature * ''Half Life'' (Jackson novel), a 2006 novel by Shelley Jackson * ''Half-Life'' (Krach novel), a 2004 novel by Aaron Krach * ''Halflife'' (Michalowski novel), a 2004 novel by Mark Michalowski * '' Rozpad połowiczny'' (), a 1988 award-winning dystopia novel by Edmund Wnuk-Lipiński Music * ''Half Life'' (3 album) (2001) * ''Halflife'' (EP), an EP by Lacuna Coil and the title track *'' Half-Life E.P.'', an EP by Local H * "Half Life", a song by 10 Years from '' The Autumn Effect'' * "Half Life", a song by Come from '' Near-Life Experience'' * "Half Life", a song by Imogen Heap from her album ''Ellipse'' * "Half Life", a song by Prototype from the album '' Trinity'' * " ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Curie (unit)
The curie (symbol Ci) is a non- SI unit of radioactivity originally defined in 1910. According to a notice in ''Nature'' at the time, it was to be named in honour of Pierre Curie, but was considered at least by some to be in honour of Marie Skłodowska-Curie as well, and is in later literature considered to be named for both. It was originally defined as "the quantity or mass of radium emanation in equilibrium with one gram of radium (element)", but is currently defined as 1 Ci = decays per second after more accurate measurements of the activity of Ra (which has a specific activity of ). In 1975 the General Conference on Weights and Measures gave the becquerel (Bq), defined as one nuclear decay per second, official status as the SI unit of activity. Therefore: : 1 Ci = = 37 GBq and : 1 Bq ≅ ≅ 27 pCi While its continued use is discouraged by the National Institute of Standards and Technology (NIST) and other bodies, the curie is still widely used throughout gover ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Becquerel
The becquerel (; symbol: Bq) is the unit of radioactivity in the International System of Units (SI). One becquerel is defined as an activity of one per second, on average, for aperiodic activity events referred to a radionuclide. For applications relating to human health this is a small quantity, and SI multiples of the unit are commonly used. The becquerel is named after Henri Becquerel, who shared a Nobel Prize in Physics with Pierre and Marie Curie in 1903 for their work in discovering radioactivity. Definition 1 Bq = 1 s−1 A special name was introduced for the reciprocal second (s) to represent radioactivity to avoid potentially dangerous mistakes with prefixes. For example, 1 μs would mean 10 disintegrations per second: , whereas 1 μBq would mean 1 disintegration per 1 million seconds. Other names considered were hertz (Hz), a special name already in use for the reciprocal second (for ''periodic'' events of any kind), and fourier (Fr; after ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Atomic Numbers
The atomic number or nuclear charge number (symbol ''Z'') of a chemical element is the charge number of its atomic nucleus. For ordinary nuclei composed of protons and neutrons, this is equal to the proton number (''n''p) or the number of protons found in the nucleus of every atom of that element. The atomic number can be used to uniquely identify ordinary chemical elements. In an ordinary uncharged atom, the atomic number is also equal to the number of electrons. For an ordinary atom which contains protons, neutrons and electrons, the sum of the atomic number ''Z'' and the neutron number ''N'' gives the atom's atomic mass number ''A''. Since protons and neutrons have approximately the same mass (and the mass of the electrons is negligible for many purposes) and the mass defect of the nucleon binding is always small compared to the nucleon mass, the atomic mass of any atom, when expressed in daltons (making a quantity called the "relative isotopic mass"), is within 1% of th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Uranium
Uranium is a chemical element; it has chemical symbol, symbol U and atomic number 92. It is a silvery-grey metal in the actinide series of the periodic table. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Uranium radioactive decay, radioactively decays, usually by emitting an alpha particle. The half-life of this decay varies between 159,200 and 4.5 billion years for different isotopes of uranium, isotopes, making them useful for dating the age of the Earth. The most common isotopes in natural uranium are uranium-238 (which has 146 neutrons and accounts for over 99% of uranium on Earth) and uranium-235 (which has 143 neutrons). Uranium has the highest atomic weight of the primordial nuclide, primordially occurring elements. Its density is about 70% higher than that of lead and slightly lower than that of gold or tungsten. It occurs naturally in low concentrations of a few Parts-per notation#Parts-per expressions, parts per million in soil, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Americium-241
Americium-241 (Am, Am-241) is an isotope of americium. Like all isotopes of americium, it is radioactive, with a half-life of . Am is the most common isotope of americium as well as the most prevalent isotope of americium in nuclear waste. It is commonly found in ionization type smoke detectors and is a potential fuel for long-lifetime radioisotope thermoelectric generators (RTGs). Its common parent nuclides are β from Pu, EC from Cm, and α from Bk. Am is not fissile, but is fissionable, and the critical mass of a bare sphere is and a sphere diameter of . Americium-241 has a specific activity of . It is commonly found in the form of americium-241 dioxide (AmO). This isotope also has one meta state, Am, with an excitation energy of and a half-life of . The presence of Am in plutonium is determined by the original concentration of plutonium-241 and the sample age. Because of the low penetration of alpha radiation, americium-241 only poses a health risk when ingested ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Plutonium
Plutonium is a chemical element; it has symbol Pu and atomic number 94. It is a silvery-gray actinide metal that tarnishes when exposed to air, and forms a dull coating when oxidized. The element normally exhibits six allotropes and four oxidation states. It reacts with carbon, halogens, nitrogen, silicon, and hydrogen. When exposed to moist air, it forms oxides and hydrides that can expand the sample up to 70% in volume, which in turn flake off as a powder that is pyrophoric. It is radioactive and can accumulate in bones, which makes the handling of plutonium dangerous. Plutonium was first synthesized and isolated in late 1940 and early 1941, by deuteron bombardment of uranium-238 in the cyclotron at the University of California, Berkeley. First, neptunium-238 (half-life 2.1 days) was synthesized, which then beta-decayed to form the new element with atomic number 94 and atomic weight 238 (half-life 88 years). Since uranium had been named after the planet Uranus ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Low Level Waste
Low-level waste (LLW) or low-level radioactive waste (LLRW) is a category of nuclear waste. The definition of low-level waste is set by the nuclear regulators of individual countries, though the International Atomic Energy Agency (IAEA) provides recommendations. LLW includes items that have become contaminated with radioactive material or have become radioactive through exposure to neutron radiation. This waste typically consists of contaminated protective shoe covers and clothing, wiping rags, mops, filters, reactor water treatment residues, equipments and tools, luminous dials, medical tubes, swabs, injection needles, syringes, and laboratory animal carcasses and tissues. LLW in the United Kingdom In the UK, LLW is defined as waste with specific activities below 12 gigabecquerel/ tonne (GBq/t) beta/gamma and below 4 GBq/t alpha emitting nuclides. Waste with specific activities above these thresholds are categorised as either Intermediate-level waste (ILW) or high heat gen ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Roentgen Equivalent Man
The roentgen equivalent man (rem) is a CGS unit of equivalent dose, effective dose, and committed dose, which are dose measures used to estimate potential health effects of low levels of ionizing radiation on the human body. Quantities measured in rem are designed to represent the stochastic biological risk of ionizing radiation, which is primarily radiation-induced cancer. These quantities are derived from absorbed dose, which in the CGS system has the unit rad. There is no universally applicable conversion constant from rad to rem; the conversion depends on relative biological effectiveness (RBE). The rem has been defined since 1976 as equal to 0.01 sievert, which is the more commonly used SI unit outside the United States. Earlier definitions going back to 1945 were derived from the roentgen unit, which was named after Wilhelm Röntgen, a German scientist who discovered X-rays. The unit name is misleading, since 1 roentgen actually deposits about 0.96 rem in soft bio ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |