HOME





Tick–tock Model
Tick–tock was a production model adopted in 2007 by integrated circuit, chip manufacturer Intel. Under this model, every new process technology was first used to manufacture a die shrink of a proven microarchitecture (tick), followed by a new microarchitecture on the now-proven process (tock). It was replaced by the process–architecture–optimization model, which was announced in 2016 and is like a tick–tock cycle followed by an optimization phase. More generally, tick–tock is an engineering model which refreshes one half of a binary system each release cycle. History Every "tick" represented a die shrink, shrinking of the process technology of the previous microarchitecture (with minor changes, commonly to the caches, and rarely introducing new instructions, as with Broadwell (microarchitecture)#Instruction set extensions, Broadwell in late 2014) and every "tock" designated a new microarchitecture. These occurred roughly every year to 18 months. Due to the slowing rate o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Integrated Circuit
An integrated circuit (IC), also known as a microchip or simply chip, is a set of electronic circuits, consisting of various electronic components (such as transistors, resistors, and capacitors) and their interconnections. These components are etched onto a small, flat piece ("chip") of semiconductor material, usually silicon. Integrated circuits are used in a wide range of electronic devices, including computers, smartphones, and televisions, to perform various functions such as processing and storing information. They have greatly impacted the field of electronics by enabling device miniaturization and enhanced functionality. Integrated circuits are orders of magnitude smaller, faster, and less expensive than those constructed of discrete components, allowing a large transistor count. The IC's mass production capability, reliability, and building-block approach to integrated circuit design have ensured the rapid adoption of standardized ICs in place of designs using discre ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


NetBurst
The NetBurst microarchitecture, called P68 inside Intel, was the successor to the P6 microarchitecture in the x86 family of central processing units (CPUs) made by Intel. The first CPU to use this architecture was the Willamette-core Pentium 4, released on November 20, 2000 and the first of the Pentium 4 CPUs; all subsequent Pentium 4 and Pentium D variants have also been based on NetBurst. In mid-2001, Intel released the ''Foster'' core, which was also based on NetBurst, thus switching the Xeon CPUs to the new architecture as well. Pentium 4-based Celeron CPUs also use the NetBurst architecture. NetBurst was replaced with the Core microarchitecture based on P6, released in July 2006. Technology The NetBurst microarchitecture includes features such as Hyper-threading, Hyper Pipelined Technology, Rapid Execution Engine, Execution Trace Cache, and replay system which all were introduced for the first time in this particular microarchitecture, and some never appeared ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Penryn (microarchitecture)
In Intel's Tick-Tock cycle, the 2007/2008 "Tick" was the shrink of the Core microarchitecture to 45 nanometers as CPUID model 23. In Core 2 processors, it is used with the code names Penryn (Socket P), Wolfdale (LGA 775) and Yorkfield (MCM, LGA 775), some of which are also sold as Celeron, Pentium and Xeon processors. In the Xeon brand, the Wolfdale-DP and Harpertown code names are used for LGA 771 based MCMs with two or four active Wolfdale cores. Architectural improvements over 65-nanometer Core 2 CPUs include a new divider with reduced latency, a new shuffle engine, and SSE4.1 instructions (some of which are enabled by the new single-cycle shuffle engine). Maximum L2 cache size per chip was increased from 4 to 6 MB, with L2 associativity increased from 16-way to 24-way. Cut-down versions with 3 MB L2 also exist, which are commonly called Penryn-3M and Wolfdale-3M as well as Yorkfield-6M, respectively. The single-core version of Penryn, listed as Penryn-L here, is not a sepa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


45 Nm Process
Per the International Technology Roadmap for Semiconductors, the 45 nm process is a MOSFET technology node referring to the average half-pitch of a memory cell manufactured at around the 2007–2008 time frame. Matsushita and Intel started mass-producing 45 nm chips in late 2007, and AMD started production of 45 nm chips in late 2008, while IBM, Infineon, Samsung, and Chartered Semiconductor have already completed a common 45 nm process platform. At the end of 2008, SMIC was the first China-based semiconductor company to move to 45 nm, having licensed the bulk 45 nm process from IBM. In 2008, TSMC moved on to a 40nm process. Many critical feature sizes are smaller than the wavelength of light used for lithography (i.e., 193 nm and 248 nm). A variety of techniques, such as larger lenses, are used to make sub-wavelength features. Double patterning has also been introduced to assist in shrinking distances between features, especially if dry lit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Merom (microprocessor)
''Merom'' is the code name for various mobile Intel processors that are sold as Core 2 Duo, Core 2 Solo, Pentium Dual-Core and Celeron. It was the first mobile processor to be based on the Core microarchitecture, replacing the Enhanced Pentium M-based Yonah processor. Merom has the product code 80537, which is shared with ''Merom-2M'' and ''Merom-L'' that are very similar but have a smaller L2 cache. Merom-L has only one processor core and a different CPUID model. The desktop version of Merom is Conroe and the dual-socket server version is Woodcrest. Merom was manufactured in a 65 nanometer process, and was succeeded by Penryn, a 45 nm version of the Merom architecture. Together, Penryn and Merom represented the first 'tick-tock' in Intel's Tick-Tock manufacturing paradigm, in which Penryn was the 'tick' (new process) to Merom's 'tock' (new architecture). Variants Merom Merom, the first mobile version of the Core 2, was officially released on July 27, 2006, but qu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Conroe (microprocessor)
Conroe is the code name for many Intel processors sold as Core 2 Duo, Xeon, Pentium Dual-Core and Celeron. It was the first desktop processor to be based on the Core microarchitecture, replacing the NetBurst microarchitecture based Cedar Mill processor. It has product code 80557, which is shared with ''Allendale'' and ''Conroe-L'' that are very similar but have a smaller L2 cache. Conroe-L has only one processor core and a new CPUID model. The mobile version of Conroe is Merom, the dual-socket server version is Woodcrest, the quad-core desktop version is Kentsfield and the quad-core dual-socket version is Clovertown. Conroe was replaced by the 45 nm Wolfdale processor. Variants Conroe The first Intel Core 2 Duo branded processor cores, code-named Conroe, were launched on July 27, 2006, at Fragapalooza, a yearly gaming event in Edmonton, Alberta, Canada. These processors were fabricated on 300 mm wafers using a 65 nm manufacturing process, and int ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kentsfield (microprocessor)
Kentsfield is the code name of the first Intel desktop Core 2 Quad and quad-core Xeon CPUs, released on November 2, 2006. The top-of-the-line Kentsfields were Core 2 Extreme models numbered ''QX6xx0'', while the mainstream Core 2 Quad models were numbered ''Q6x00''. All of them featured two 8 MiB L2 cache. The mainstream 65 nanometer Core 2 Quad Q6600, clocked at 2.4 GHz, was launched on January 8, 2007 at US$851 (reduced to US$530 on April 7, 2007). July 22, 2007 marked the release of the Core 2 Quad Q6700 and Core 2 Extreme QX6850 Kentsfields at US$530 and US$999 respectively; the price of the Q6600 was later reduced to US$266. Both Kentsfield and Kentsfield XE use product code 80562. Variants Kentsfield Analogous to the Pentium D branded CPUs, the Kentsfields comprise two separate silicon dies (each equivalent to a single Core 2 Duo) on one MCM. This results in lower costs, but a lesser share of the bandwidth from each of the CPUs to the northbridge than if the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Clovertown (microprocessor)
Xeon (; ) is a brand of x86 microprocessors designed, manufactured, and marketed by Intel, targeted at the non-consumer workstation, server, and embedded markets. It was introduced in June 1998. Xeon processors are based on the same architecture as regular desktop-grade CPUs, but have advanced features such as support for error correction code (ECC) memory, higher core counts, more PCI Express lanes, support for larger amounts of RAM, larger cache memory and extra provision for enterprise-grade reliability, availability and serviceability (RAS) features responsible for handling hardware exceptions through the Machine Check Architecture (MCA). They are often capable of safely continuing execution where a normal processor cannot due to these extra RAS features, depending on the type and severity of the machine-check exception (MCE). Some also support multi-socket systems with two, four, or eight sockets through use of the Ultra Path Interconnect (UPI) bus, which replaced the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Woodcrest (microprocessor)
Xeon (; ) is a brand of x86 microprocessors designed, manufactured, and marketed by Intel, targeted at the non-consumer workstation, server, and embedded markets. It was introduced in June 1998. Xeon processors are based on the same architecture as regular desktop-grade CPUs, but have advanced features such as support for error correction code (ECC) memory, higher core counts, more PCI Express lanes, support for larger amounts of RAM, larger cache memory and extra provision for enterprise-grade reliability, availability and serviceability (RAS) features responsible for handling hardware exceptions through the Machine Check Architecture (MCA). They are often capable of safely continuing execution where a normal processor cannot due to these extra RAS features, depending on the type and severity of the machine-check exception (MCE). Some also support multi-socket systems with two, four, or eight sockets through use of the Ultra Path Interconnect (UPI) bus, which replaced the o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Merom (microarchitecture)
The Intel Core microarchitecture (provisionally referred to as Next Generation Micro-architecture, and developed as Merom) is a multi-core processor microarchitecture launched by Intel in mid-2006. It is a major evolution over the Yonah, the previous iteration of the P6 microarchitecture series which started in 1995 with Pentium Pro. It also replaced the NetBurst microarchitecture, which suffered from high power consumption and heat intensity due to an inefficient pipeline designed for high clock rate. In early 2004, Prescott needed very high power to reach the clocks it needed for competitive performance, making it unsuitable for the shift to dual/multi-core CPUs. On May 7, 2004, Intel confirmed the cancellation of the next NetBurst, Tejas and Jayhawk. Intel had been developing Merom, the 64-bit evolution of the Pentium M, since 2001, and decided to expand it to all market segments, replacing NetBurst in desktop computers and servers. It inherited from Pentium M the choice o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Intel Core (microarchitecture)
The Intel Core microarchitecture (provisionally referred to as Next Generation Micro-architecture, and developed as Merom) is a multi-core processor microarchitecture launched by Intel in mid-2006. It is a major evolution over the Yonah, the previous iteration of the P6 microarchitecture series which started in 1995 with Pentium Pro. It also replaced the NetBurst microarchitecture, which suffered from high power consumption and heat intensity due to an inefficient pipeline designed for high clock rate. In early 2004, Prescott needed very high power to reach the clocks it needed for competitive performance, making it unsuitable for the shift to dual/multi-core CPUs. On May 7, 2004, Intel confirmed the cancellation of the next NetBurst, Tejas and Jayhawk. Intel had been developing Merom, the 64-bit evolution of the Pentium M, since 2001, and decided to expand it to all market segments, replacing NetBurst in desktop computers and servers. It inherited from Pentium M the choi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]