HOME





Thue Number
In the Mathematics, mathematical area of graph theory, the Thue number of a graph is a variation of the chromatic index, defined by and named after mathematician Axel Thue, who studied the squarefree words used to define this number. Alon et al. define a ''nonrepetitive coloring'' of a graph to be an assignment of colors to the edges of the graph, such that there does not exist any even-length path (graph theory), simple path in the graph in which the colors of the edges in the first half of the path form the same sequence as the colors of the edges in the second half of the path. The Thue number of a graph is the minimum number of colors needed in any nonrepetitive coloring. Variations on this concept involving vertex colorings or more general walks on a graph have been studied by several authors.; ; ; . Example Consider a pentagon, that is, a Cycle graph, cycle C_5 of five vertices. If its edges are colored with two colors, some two adjacent edges will have the same color x; ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Graph Theory
In mathematics and computer science, graph theory is the study of ''graph (discrete mathematics), graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of ''Vertex (graph theory), vertices'' (also called ''nodes'' or ''points'') which are connected by ''Glossary of graph theory terms#edge, edges'' (also called ''arcs'', ''links'' or ''lines''). A distinction is made between undirected graphs, where edges link two vertices symmetrically, and directed graphs, where edges link two vertices asymmetrically. Graphs are one of the principal objects of study in discrete mathematics. Definitions Definitions in graph theory vary. The following are some of the more basic ways of defining graphs and related mathematical structures. Graph In one restricted but very common sense of the term, a graph is an ordered pair G=(V,E) comprising: * V, a Set (mathematics), set of vertices (also called nodes or points); * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Chromatic Index
In graph theory, a proper edge coloring of a Graph (discrete mathematics), graph is an assignment of "colors" to the edges of the graph so that no two incident edges have the same color. For example, the figure to the right shows an edge coloring of a graph by the colors red, blue, and green. Edge colorings are one of several different types of graph coloring. The edge-coloring problem asks whether it is possible to color the edges of a given graph using at most different colors, for a given value of , or with the fewest possible colors. The minimum required number of colors for the edges of a given graph is called the chromatic index of the graph. For example, the edges of the graph in the illustration can be colored by three colors but cannot be colored by two colors, so the graph shown has chromatic index three. By Vizing's theorem, the number of colors needed to edge color a simple graph is either its maximum Degree (graph theory), degree or . For some graphs, such as bip ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Axel Thue
Axel Thue (; 19 February 1863 – 7 March 1922) was a Norwegian mathematician, known for his original work in diophantine approximation and combinatorics. Work Thue published his first important paper in 1909. He stated in 1914 the so-called word problem for semigroups or Thue problem, closely related to the halting problem In computability theory (computer science), computability theory, the halting problem is the problem of determining, from a description of an arbitrary computer program and an input, whether the program will finish running, or continue to run for .... Ronald V. Book and Friedrich Otto, ''String-rewriting Systems'', Springer, 1993, , p. 36. His only known PhD student was Thoralf Skolem. The esoteric programming language Thue is named after him. Publications * * See also * * * * * * * * References External links Axel Thue private archiveexists at NTNU University LibrarDorabiblioteket 1863 births 1922 deaths 20th-century Norwegian mathematicians ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Squarefree Word
In combinatorics, a square-free word is a word (a sequence of symbols) that does not contain any squares. A square is a word of the form , where is not empty. Thus, a square-free word can also be defined as a word that avoids the pattern . Finite square-free words Binary alphabet Over a binary alphabet \, the only square-free words are the empty word \epsilon,0,1,01,10,010, and 101. Ternary alphabet Over a ternary alphabet ''\'', there are infinitely many square-free words. It is possible to count the number c(n) of ternary square-free words of length . This number is bounded by c(n) = \Theta(\alpha^n) , where 1.3017597 in \Sigma_ uniformly at random set \chi_w to ''w /math>'' followed by all other letters of \Sigma_ in increasing order set the number of iterations to 0 while , w, to the end of update \chi_w shifting the first elements to the right and setting \chi_w = a increment by if ends with a square of rank then ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Path (graph Theory)
In graph theory, a path in a graph is a finite or infinite sequence of edges which joins a sequence of vertices which, by most definitions, are all distinct (and since the vertices are distinct, so are the edges). A directed path (sometimes called dipath) in a directed graph is a finite or infinite sequence of edges which joins a sequence of distinct vertices, but with the added restriction that the edges be all directed in the same direction. Paths are fundamental concepts of graph theory, described in the introductory sections of most graph theory texts. See e.g. , , or . cover more advanced algorithmic topics concerning paths in graphs. Definitions Walk, trail, and path * A walk is a finite or infinite sequence of edges which joins a sequence of vertices. : Let be a graph. A finite walk is a sequence of edges for which there is a sequence of vertices such that ''Φ''(''e''''i'') = for . is the ''vertex sequence'' of the walk. The walk is ''closed'' if ''v''1 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pentagon
In geometry, a pentagon () is any five-sided polygon or 5-gon. The sum of the internal angles in a simple polygon, simple pentagon is 540°. A pentagon may be simple or list of self-intersecting polygons, self-intersecting. A self-intersecting ''regular pentagon'' (or ''star polygon, star pentagon'') is called a pentagram. Regular pentagons A ''regular polygon, regular pentagon'' has Schläfli symbol and interior angles of 108°. A ''regular polygon, regular pentagon'' has five lines of reflectional symmetry, and rotational symmetry of order 5 (through 72°, 144°, 216° and 288°). The diagonals of a convex polygon, convex regular pentagon are in the golden ratio to its sides. Given its side length t, its height H (distance from one side to the opposite vertex), width W (distance between two farthest separated points, which equals the diagonal length D) and circumradius R are given by: :\begin H &= \frac~t \approx 1.539~t, \\ W= D &= \frac~t\approx 1.618~t, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cycle Graph
In graph theory, a cycle graph or circular graph is a graph that consists of a single cycle, or in other words, some number of vertices (at least 3, if the graph is simple) connected in a closed chain. The cycle graph with vertices is called . The number of vertices in equals the number of edges, and every vertex has degree 2; that is, every vertex has exactly two edges incident with it. If n = 1, it is an isolated loop. Terminology There are many synonyms for "cycle graph". These include simple cycle graph and cyclic graph, although the latter term is less often used, because it can also refer to graphs which are merely not acyclic. Among graph theorists, cycle, polygon, or ''n''-gon are also often used. The term ''n''-cycle is sometimes used in other settings. A cycle with an even number of vertices is called an even cycle; a cycle with an odd number of vertices is called an odd cycle. Properties A cycle graph is: * 2-edge colorable, if and only if it has an even n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Lovász Local Lemma
In probability theory, if a large number of events are all independent of one another and each has probability less than 1, then there is a positive (possibly small) probability that none of the events will occur. The Lovász local lemma allows a slight relaxation of the independence condition: As long as the events are "mostly" independent from one another and aren't individually too likely, then there will still be a positive probability that none of them occurs. This lemma is most commonly used in the probabilistic method, in particular to give existence proofs. There are several different versions of the lemma. The simplest and most frequently used is the symmetric version given below. A weaker version was proved in 1975 by László Lovász and Paul Erdős in the article ''Problems and results on 3-chromatic hypergraphs and some related questions''. For other versions, see . In 2020, Robin Moser and Gábor Tardos received the Gödel Prize for their algorithmic version of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Petersen Graph
In the mathematical field of graph theory, the Petersen graph is an undirected graph with 10 vertices and 15 edges. It is a small graph that serves as a useful example and counterexample for many problems in graph theory. The Petersen graph is named after Julius Petersen, who in 1898 constructed it to be the smallest bridgeless cubic graph with no three- edge-coloring. Although the graph is generally credited to Petersen, it had in fact first appeared 12 years earlier, in a paper by . Kempe observed that its vertices can represent the ten lines of the Desargues configuration, and its edges represent pairs of lines that do not meet at one of the ten points of the configuration. Donald Knuth states that the Petersen graph is "a remarkable configuration that serves as a counterexample to many optimistic predictions about what might be true for graphs in general." The Petersen graph also makes an appearance in tropical geometry. The cone over the Petersen graph is naturally ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Co-NP
In computational complexity theory, co-NP is a complexity class. A decision problem X is a member of co-NP if and only if its complement is in the complexity class NP. The class can be defined as follows: a decision problem is in co-NP if and only if for every ''no''-instance we have a polynomial-length " certificate" and there is a polynomial-time algorithm that can be used to verify any purported certificate. That is, co-NP is the set of decision problems where there exists a polynomial and a polynomial-time bounded Turing machine ''M'' such that for every instance ''x'', ''x'' is a ''no''-instance if and only if: for some possible certificate ''c'' of length bounded by , the Turing machine ''M'' accepts the pair . Complementary problems While an NP problem asks whether a given instance is a ''yes''-instance, its ''complement'' asks whether an instance is a ''no''-instance, which means the complement is in co-NP. Any ''yes''-instance for the original NP problem becomes a '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]