HOME





T-schema
The T-schema ("truth schema", not to be confused with " Convention T") is used to check if an inductive definition of truth is valid, which lies at the heart of any realisation of Alfred Tarski's semantic theory of truth. Some authors refer to it as the "Equivalence Schema", a synonym introduced by Michael Dummett. The T-schema is often expressed in natural language, but it can be formalized in many-sorted predicate logic or modal logic; such a formalisation is called a "T-theory." T-theories form the basis of much fundamental work in philosophical logic, where they are applied in several important controversies in analytic philosophy. As expressed in semi-natural language (where 'S' is the name of the sentence abbreviated to S): 'S' is true if and only if S. Example: 'snow is white' is true if and only if snow is white. The inductive definition By using the schema one can give an inductive definition for the truth of compound sentences. Atomic sentences are assigned truth ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Semantic Theory Of Truth
A semantic theory of truth is a theory of truth in the philosophy of language which holds that truth is a property of sentences. Origin The semantic conception of truth, which is related in different ways to both the correspondence and deflationary conceptions, is due to work by Polish logician Alfred Tarski. Tarski, in "On the Concept of Truth in Formal Languages" (1935), attempted to formulate a new theory of truth in order to resolve the liar paradox. In the course of this he made several metamathematical discoveries, most notably Tarski's undefinability theorem using the same formal technique Kurt Gödel used in his incompleteness theorems. Roughly, this states that a truth-predicate satisfying Convention T for the sentences of a given language cannot be defined ''within'' that language. Tarski's theory of truth To formulate linguistic theories without semantic paradoxes such as the liar paradox, it is generally necessary to distinguish the language that one is tal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Truth
Truth or verity is the Property (philosophy), property of being in accord with fact or reality.Merriam-Webster's Online Dictionarytruth, 2005 In everyday language, it is typically ascribed to things that aim to represent reality or otherwise correspond to it, such as beliefs, propositions, and declarative sentences. True statements are usually held to be the opposite of false statement, false statements. The concept of truth is discussed and debated in various contexts, including philosophy, art, theology, law, and science. Most human activities depend upon the concept, where its nature as a concept is assumed rather than being a subject of discussion, including journalism and everyday life. Some philosophers view the concept of truth as basic, and unable to be explained in any terms that are more easily understood than the concept of truth itself. Most commonly, truth is viewed as the correspondence of language or thought to a mind-independent world. This is called the correspon ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Alfred Tarski
Alfred Tarski (; ; born Alfred Teitelbaum;School of Mathematics and Statistics, University of St Andrews ''School of Mathematics and Statistics, University of St Andrews''. January 14, 1901 – October 26, 1983) was a Polish-American logician and mathematician. A prolific author best known for his work on model theory, metamathematics, and algebraic logic, he also contributed to abstract algebra, topology, geometry, measure theory, mathematical logic, set theory, type theory, and analytic philosophy. Educated in Poland at the University of Warsaw, and a member of the Lwów–Warsaw school, Lwów–Warsaw school of logic and the Warsaw school of mathematics, he immigrated to the United States in 1939 where he became a naturalized citizen in 1945. Tarski taught and carried out research in mathematics at the University of California, Berkeley, from 1942 until his death in 1983.#FefA, Feferman A. His biographers Anita Burdman Feferman and Solomon Feferman state that, "Along with ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Predicate Logic
First-order logic, also called predicate logic, predicate calculus, or quantificational logic, is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables. Rather than propositions such as "all humans are mortal", in first-order logic one can have expressions in the form "for all ''x'', if ''x'' is a human, then ''x'' is mortal", where "for all ''x"'' is a quantifier, ''x'' is a variable, and "... ''is a human''" and "... ''is mortal''" are predicates. This distinguishes it from propositional logic, which does not use quantifiers or relations; in this sense, propositional logic is the foundation of first-order logic. A theory about a topic, such as set theory, a theory for groups,A. Tarski, ''Undecidable Theories'' (1953), p. 77. Studies in Logic and the Foundation of Mathematics, North-Holland or a formal theory ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Atomic Sentences
In logic and analytic philosophy, an atomic sentence is a type of declarative sentence which is either true or false (may also be referred to as a proposition, statement or truthbearer) and which cannot be broken down into other simpler sentences. For example, "The dog ran" is atomic whereas "The dog ran and the cat hid" is molecular in natural language. From a logical analysis point of view, the truth of a sentence is determined by only two things: * the logical form of the sentence. * the truth of its underlying atomic sentences. That is to say, for example, that the truth of the sentence "John is Greek and John is happy" is a function of the meaning of " and", and the truth values of the atomic sentences "John is Greek" and "John is happy". However, the truth of an atomic sentence is not a matter that is within the scope of logic itself, but rather whatever art or science the content of the atomic sentence happens to be talking about. Logic has developed artificial languages, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Disquotational Principle
The disquotational principle is a philosophical principle which holds that a rational speaker will accept "''p''" if and only if they believe ''p''. The quotes indicate that the statement ''p'' is being treated as a sentence, and not as a proposition. This principle is presupposed by claims that hold that substitution fails in certain intensional contexts. Overview Consider the following argument: :(1) Sally accepts the assertion that "Cicero was a famous orator" while dissenting from the assertion that "Tully was a famous orator". :(2) Cicero is Tully :Therefore, (3) Sally believes that Tully was a famous orator. To derive (3), we have to assume that when Sally accepts that "Cicero was a famous orator", she believes that Cicero was a famous orator. Then we can exchange Cicero for Tully, and derive (3). Bertrand Russell thought that this demonstrated the failure of substitutivity of identicals in intensional contexts. In "A Puzzle about Belief,"Kripke, Saul. "A Puzzle about Be ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Notre Dame Journal Of Formal Logic
The ''Notre Dame Journal of Formal Logic'' is a quarterly peer-reviewed scientific journal covering the foundations of mathematics and related fields of mathematical logic, as well as philosophy of mathematics. It was established in 1960 and is published by Duke University Press on behalf of the University of Notre Dame. The editors-in-chief are Curtis Franks and Anand Pillay (University of Notre Dame). The founder of the magazine was Boleslaw Sobocinski. Abstracting and indexing The journal is abstracted and indexed in: According to the ''Journal Citation Reports'', the journal has a 2012 impact factor The impact factor (IF) or journal impact factor (JIF) of an academic journal is a type of journal ranking. Journals with higher impact factor values are considered more prestigious or important within their field. The Impact Factor of a journa ... of 0.431. References External links * Journal pageat Notre Dame University Journal pageat Project Euclid Mathematic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Philosophical Logic
Understood in a narrow sense, philosophical logic is the area of logic that studies the application of logical methods to philosophical problems, often in the form of extended logical systems like modal logic. Some theorists conceive philosophical logic in a wider sense as the study of the scope and nature of logic in general. In this sense, philosophical logic can be seen as identical to the philosophy of logic, which includes additional topics like how to define logic or a discussion of the fundamental concepts of logic. The current article treats philosophical logic in the narrow sense, in which it forms one field of inquiry within the philosophy of logic. An important issue for philosophical logic is the question of how to classify the great variety of non-classical logical systems, many of which are of rather recent origin. One form of classification often found in the literature is to distinguish between extended logics and deviant logics. Logic itself can be defined as t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematical Logic
Mathematical logic is the study of Logic#Formal logic, formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory (also known as computability theory). Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics. Since its inception, mathematical logic has both contributed to and been motivated by the study of foundations of mathematics. This study began in the late 19th century with the development of axiomatic frameworks for geometry, arithmetic, and Mathematical analysis, analysis. In the early 20th century it was shaped by David Hilbert's Hilbert's program, program to prove the consistency of foundational theories. Results of Kurt Gödel, Gerhard Gentzen, and others provided partial resolution to th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Law Of Excluded Middle
In logic, the law of excluded middle or the principle of excluded middle states that for every proposition, either this proposition or its negation is true. It is one of the three laws of thought, along with the law of noncontradiction and the law of identity; however, no system of logic is built on just these laws, and none of these laws provides inference rules, such as modus ponens or De Morgan's laws. The law is also known as the law/principle of the excluded third, in Latin ''principium tertii exclusi''. Another Latin designation for this law is ''tertium non datur'' or "no third ossibilityis given". In classical logic, the law is a tautology. In contemporary logic the principle is distinguished from the semantical principle of bivalence, which states that every proposition is either true or false. The principle of bivalence always implies the law of excluded middle, while the converse is not always true. A commonly cited counterexample uses statements unprovable n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Principle Of Bivalence
In logic, the semantic principle (or law) of bivalence states that every declarative sentence expressing a proposition (of a theory under inspection) has exactly one truth value, either true or false. A logic satisfying this principle is called a two-valued logic or bivalent logic. In formal logic, the principle of bivalence becomes a property that a semantics may or may not possess. It is not the same as the law of excluded middle, however, and a semantics may satisfy that law without being bivalent. The principle of bivalence is studied in philosophical logic to address the question of which natural-language statements have a well-defined truth value. Sentences that predict events in the future, and sentences that seem open to interpretation, are particularly difficult for philosophers who hold that the principle of bivalence applies to all declarative natural-language statements. Many-valued logics formalize ideas that a realistic characterization of the notion of conseq ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]