HOME





Systolic Geometry
In mathematics, systolic geometry is the study of systolic invariants of manifolds and polyhedra, as initially conceived by Charles Loewner and developed by Mikhail Gromov, Michael Freedman, Peter Sarnak, Mikhail Katz, Larry Guth, and others, in its arithmetical, ergodic, and topological manifestations. See also Introduction to systolic geometry. The notion of systole The ''systole'' of a compact metric space ''X'' is a metric invariant of ''X'', defined to be the least length of a noncontractible loop in ''X'' (i.e. a loop that cannot be contracted to a point in the ambient space ''X''). In more technical language, we minimize length over free loops representing nontrivial conjugacy classes in the fundamental group of ''X''. When ''X'' is a graph, the invariant is usually referred to as the girth, ever since the 1947 article on girth by W. T. Tutte. Possibly inspired by Tutte's article, Loewner started thinking about systolic questions on surfaces in the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Free Loop
In the mathematical field of topology, a free loop is a variant of the notion of a loop. Whereas a loop has a distinguished point on it, called its basepoint, a free loop lacks such a distinguished point. Formally, let X be a topological space. Then a free loop in X is an equivalence class of continuous functions from the circle S^1 to X. Two loops are equivalent if they differ by a reparameterization of the circle. That is, f \sim g if there exists a homeomorphism \psi : S^1 \rightarrow S^1 such that g = f\circ\psi. Thus, a free loop, as opposed to a based loop used in the definition of the fundamental group, is a map from the circle to the space without the basepoint-preserving restriction. Assuming the space is path-connected, free homotopy classes of free loops correspond to conjugacy classes in the fundamental group. Recently, interest in the space of all free loops LX has grown with the advent of string topology, i.e. the study of new algebraic structures on the homo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Torus
In geometry, a torus (: tori or toruses) is a surface of revolution generated by revolving a circle in three-dimensional space one full revolution about an axis that is coplanarity, coplanar with the circle. The main types of toruses include ring toruses, horn toruses, and spindle toruses. A ring torus is sometimes colloquially referred to as a donut or doughnut. If the axis of revolution does not touch the circle, the surface has a ring shape and is called a torus of revolution, also known as a ring torus. If the axis of revolution is tangent to the circle, the surface is a horn torus. If the axis of revolution passes twice through the circle, the surface is a Lemon (geometry), spindle torus (or ''self-crossing torus'' or ''self-intersecting torus''). If the axis of revolution passes through the center of the circle, the surface is a degenerate torus, a double-covered sphere. If the revolved curve is not a circle, the surface is called a ''toroid'', as in a square toroid. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Isoperimetry
In mathematics, the isoperimetric inequality is a geometric inequality involving the square of the circumference of a closed curve in the plane and the area of a plane region it encloses, as well as its various generalizations. '' Isoperimetric'' literally means "having the same perimeter". Specifically, the isoperimetric inequality states, for the length ''L'' of a closed curve and the area ''A'' of the planar region that it encloses, that :4\pi A \le L^2, and that equality holds if and only if the curve is a circle. The isoperimetric problem is to determine a plane figure of the largest possible area whose boundary has a specified length. The closely related ''Dido's problem'' asks for a region of the maximal area bounded by a straight line and a curvilinear arc whose endpoints belong to that line. It is named after Dido, the legendary founder and first queen of Carthage. The solution to the isoperimetric problem is given by a circle and was known already in Ancient Greece. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Systolic Category
The systole (or systolic category) is a numerical invariant of a closed manifold ''M'', introduced by Mikhail Katz Mikhail "Mischa" Gershevich Katz (, ; born 1958)Curriculum vitae
retrieved ...
and Yuli Rudyak in 2006, by analogy with the Lusternik–Schnirelmann category. The invariant is defined in terms of the systoles of ''M'' and its covers, as the largest number of systoles in a product yielding a curvature-free lower bound for the total volume of ''M''. The i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Lusternik–Schnirelmann Category
In mathematics, the Lyusternik–Schnirelmann category (or, Lusternik–Schnirelmann category, LS-category) of a topological space X is the homotopy invariant defined to be the smallest integer number k such that there is an open covering \_ of X with the property that each inclusion map U_i\hookrightarrow X is nullhomotopic. For example, if X is a sphere, this takes the value two. Sometimes a different normalization of the invariant is adopted, which is one less than the definition above. Such a normalization has been adopted in the definitive monograph by Cornea, Lupton, Oprea, and Tanré (see below). In general it is not easy to compute this invariant, which was initially introduced by Lazar Lyusternik and Lev Schnirelmann in connection with variational problems. It has a close connection with algebraic topology, in particular cup-length. In the modern normalization, the cup-length is a lower bound for the LS-category. It was, as originally defined for the case of X a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


René Thom
René Frédéric Thom (; 2 September 1923 – 25 October 2002) was a French mathematician, who received the Fields Medal in 1958. He made his reputation as a topologist, moving on to aspects of what would be called singularity theory; he became world-famous among the wider academic community and the educated general public for one aspect of this latter interest, his work as the founder of catastrophe theory (later developed by Christopher Zeeman). Life and career René Thom grew up in a modest family in Montbéliard, Doubs and obtained a Baccalauréat in 1940. After the German invasion of France, his family took refuge in Switzerland and then in Lyon. In 1941 he moved to Paris to attend Lycée Saint-Louis and in 1943 he began studying mathematics at École Normale Supérieure, becoming agrégé in 1946. He received his PhD in 1951 from the University of Paris. His thesis, titled ''Espaces fibrés en sphères et carrés de Steenrod'' (''Sphere bundles and Steenrod squares' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Marcel Berger
Marcel Berger (14 April 1927 – 15 October 2016) was a French mathematician, doyen of French differential geometry, and a former director of the Institut des Hautes Études Scientifiques (IHÉS), France. Biography After studying from 1948 to 1951 at the École normale supérieure in Paris, Berger obtained in 1954 his PhD from the University of Paris, with thesis written under the direction of André Lichnerowicz. From 1958 to 1964 he taught at the University of Strasbourg and had visiting positions at the Massachusetts Institute of Technology and the University of California, Berkeley. From 1964 to 1966 he taught at the University of Nice, after which he joined the University of Paris VII. From 1985 to 1993 he served as director of the IHÉS. Formerly residing in Le Castera in Lasseube, Berger was instrumental in Mikhail Gromov's accepting positions both at the University of Paris and at the IHÉS. Awards and honors *1956 Prix Peccot, Collège de France *1962 Prix Maurice ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pao Ming Pu
Pao Ming Pu (; August 1910 – February 22, 1988), was a Chinese mathematician born in Jintang County, Sichuan, China.. He was a student of Charles Loewner and a pioneer of systolic geometry, having proved what is today called Pu's inequality for the real projective plane, following Loewner's proof of Loewner's torus inequality. He later worked in the area of fuzzy mathematics. He spent much of his career as professor and chairman of the department of mathematics at Sichuan University. Biography Pu received his Ph.D. at Syracuse University in 1950 under the supervision of Charles Loewner, resulting in the publication in 1952 of the seminal paper containing both Pu's inequality for the real projective plane and Loewner's torus inequality. .99 The listing at the Mathematics Genealogy Project indicates that his first name, according to Syracuse University records, was ''Frank''. Pu returned to mainland China in February 1951. (Katz '07) suggests that Pu may have been forc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Pu's Inequality
In differential geometry, Pu's inequality, proved by Pao Ming Pu, relates the area of an arbitrary Riemannian surface homeomorphic to the real projective plane with the lengths of the closed curves contained in it. Statement A student of Charles Loewner, Pu proved in his 1950 thesis that every Riemannian surface M homeomorphic to the real projective plane satisfies the inequality : \operatorname(M) \geq \frac \operatorname(M)^2 , where \operatorname(M) is the systole of M . The equality is attained precisely when the metric has constant Gaussian curvature. In other words, if all noncontractible loops in M have length at least L , then \operatorname(M) \geq \frac L^2, and the equality holds if and only if M is obtained from a Euclidean sphere of radius r=L/\pi by identifying each point with its antipodal. Pu's paper also stated for the first time Loewner's inequality, a similar result for Riemannian metrics on the torus. Proof Pu's original proof relies ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Proceedings Of The Cambridge Philosophical Society
''Mathematical Proceedings of the Cambridge Philosophical Society'' is a mathematical journal published by Cambridge University Press for the Cambridge Philosophical Society. It aims to publish original research papers from a wide range of pure and applied mathematics. The journal, titled ''Proceedings of the Cambridge Philosophical Society'' before 1975, has been published since 1843. Abstracting and indexing The journal is abstracted and indexed in *MathSciNet *Science Citation Index Expanded *Scopus *ZbMATH Open See also *Cambridge Philosophical Society The Cambridge Philosophical Society (CPS) is a scientific society at the University of Cambridge. It was founded in 1819. The name derives from the medieval use of the word philosophy to denote any research undertaken outside the fields of law ... External linksofficial website References Academic journals associated with learned and professional societies Cambridge University Press academic journals Mathematics e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Girth (graph Theory)
In graph theory, the girth of an undirected graph is the length of a shortest Cycle (graph theory), cycle contained in the graph. If the graph does not contain any cycles (that is, it is a forest (graph theory), forest), its girth is defined to be infinity. For example, a 4-cycle (square) has girth 4. A grid has girth 4 as well, and a triangular mesh has girth 3. A graph with girth four or more is triangle-free graph, triangle-free. Cages A cubic graph (all vertices have degree three) of girth that is as small as possible is known as a -cage (graph theory), cage (or as a -cage). The Petersen graph is the unique 5-cage (it is the smallest cubic graph of girth 5), the Heawood graph is the unique 6-cage, the McGee graph is the unique 7-cage and the Tutte eight cage is the unique 8-cage. There may exist multiple cages for a given girth. For instance there are three nonisomorphic 10-cages, each with 70 vertices: the Balaban 10-cage, the Harries graph and the Harries–Wong graph. Im ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]