HOME



picture info

Sulfonium
In organic chemistry, a sulfonium ion, also known as sulphonium ion or sulfanium ion, is a positively-charged ion (a "cation") featuring three organic substituents attached to sulfur. These organosulfur compounds have the formula . Together with a negatively-charged counterion, they give sulfonium salts. They are typically colorless solids that are soluble in organic solvent. Synthesis Sulfonium compounds are usually synthesized by the reaction of thioethers with alkyl halides. For example, the reaction of dimethyl sulfide with iodomethane yields trimethylsulfonium iodide: : + → The reaction proceeds by a nucleophilic substitution mechanism (SN2). Iodide is the leaving group departs. The rate of methylation is faster with more electrophilic methylating agents, such as methyl trifluoromethanesulfonate. Inversion Sulfonium ions with three different substituents are chiral owing to their pyramidal structure. Unlike the isoelectronic oxonium ions (R3O+), chiral sulfoni ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sulfonium Compounds
In organic chemistry, a sulfonium ion, also known as sulphonium ion or sulfanium ion, is a positively-charged ion (a "cation") featuring three organic substituents attached to sulfur. These organosulfur compounds have the formula . Together with a negatively-charged counterion, they give sulfonium salts. They are typically colorless solids that are soluble in organic solvent. Synthesis Sulfonium compounds are usually synthesized by the reaction of thioethers with alkyl halides. For example, the reaction of dimethyl sulfide with iodomethane yields trimethylsulfonium iodide: : + → The reaction proceeds by a nucleophilic substitution mechanism (SN2). Iodide is the leaving group departs. The rate of methylation is faster with more electrophilic methylating agents, such as methyl trifluoromethanesulfonate. Inversion Sulfonium ions with three different substituents are chiral owing to their pyramidal structure. Unlike the isoelectronic oxonium ions (R3O+), chiral sulfoniu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




S-Methylmethionine
''S''-Methylmethionine (SMM) is a derivative of methionine with the chemical formula ( CH3)2S+CH2CH2CH(NH3+)CO2−. This cation is a naturally-occurring intermediate in many biosynthetic pathways owing to the sulfonium functional group. It is biosynthesized from L-methionine which is first converted to ''S''-adenosylmethionine. The subsequent conversion, involving replacement of the adenosyl group by a methyl group is catalyzed by the enzyme methionine ''S''-methyltransferase. ''S''-methylmethionine is particularly abundant in plants, being more abundant than methionine. ''S''-Methylmethionine is sometimes referred to as ''vitamin U'', but it is not considered a true vitamin. The term was coined in 1950 by Garnett Cheney for uncharacterized anti-ulcerogenic factors in raw cabbage juice that may help speed healing of peptic ulcers. Biosynthesis and biochemical function ''S''-Methylmethionine arises via the methylation of methionine by ''S''-adenosyl methionine (SAM). The co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dimethylsulfoniopropionate
Dimethylsulfoniopropionate (DMSP), is an organosulfur compound with the formula (CH3)2S+CH2CH2COO−. This zwitterionic metabolite can be found in marine phytoplankton, seaweeds, and some species of terrestrial and aquatic vascular plants. It functions as an osmolyte as well as several other physiological and environmental roles have also been identified. DMSP was first identified in the marine red alga ''Polysiphonia fastigiata''. Biosynthesis In higher plants, DMSP is biosynthesized from ''S''-methylmethionine. Two intermediates in this conversion are dimethylsulfoniumpropylamine and dimethylsulfoniumpropionaldehyde. In algae, however, the biosynthesis starts with the replacement of the amino group in methionine by hydroxide. Degradation DMSP is broken down by marine microbes to form two major volatile sulfur products, each with distinct effects on the environment. One of its breakdown products is methanethiol (CH3SH), which is assimilated by bacteria into protein su ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dimethylsulfoniopropionate Structural Formula V1
Dimethylsulfoniopropionate (DMSP), is an organosulfur compound with the formula (CH3)2S+CH2CH2COO−. This zwitterionic metabolite can be found in marine phytoplankton, seaweeds, and some species of terrestrial and aquatic vascular plants. It functions as an osmolyte as well as several other physiological and environmental roles have also been identified. DMSP was first identified in the marine red alga ''Polysiphonia fastigiata''. Biosynthesis In higher plants, DMSP is biosynthesized from ''S''-methylmethionine. Two intermediates in this conversion are dimethylsulfoniumpropylamine and dimethylsulfoniumpropionaldehyde. In algae, however, the biosynthesis starts with the replacement of the amino group in methionine by hydroxide. Degradation DMSP is broken down by marine microbes to form two major volatile sulfur products, each with distinct effects on the environment. One of its breakdown products is methanethiol (CH3SH), which is assimilated by bacteria into protein sulfur ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Organosulfur Compound
Organosulfur compounds are organic compounds that contain sulfur. They are often associated with foul odors, but many of the sweetest compounds known are organosulfur derivatives, e.g., saccharin. Nature abounds with organosulfur compounds—sulfur is vital for life. Of the 20 common amino acids, two (cysteine and methionine) are organosulfur compounds, and the antibiotics penicillin and sulfa drugs both contain sulfur. While sulfur-containing antibiotics save many lives, sulfur mustard is a deadly chemical warfare agent. Fossil fuels, coal, petroleum, and natural gas, which are derived from ancient organisms, necessarily contain organosulfur compounds, the removal of which is a major focus of oil refineries. Sulfur shares the chalcogen group with oxygen, selenium, and tellurium, and it is expected that organosulfur compounds have similarities with carbon–oxygen, carbon–selenium, and carbon–tellurium compounds. A classical chemical test for the detection of sulfur ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Trimethylsulfonium Iodide
Trimethylsulfonium (systematically named trimethylsulfanium and trimethylsulfur(1+)) is an organic cation with the chemical formula (CH3)3S+ (also written as ). Compounds Several salts of trimethylsulfonium are known. X-ray crystallography reveals that the sulfur is pyramidal, with C-S-C angles near 102° and C-S bond distance of 177 picometers. Unless the anion is colored, all trimethylsulfonium salts are white or colorless. Preparation Sulfonium compounds can be synthesised by treating a suitable alkyl halide with a thioether. For example, the reaction of dimethyl sulfide with iodomethane yields trimethylsulfonium iodide: :CH3–S–CH3 + CH3–I → (CH3)3SI Related An extra oxygen atom can bond to the sulfur atom to yield the trimethylsulfoxonium ion. Use Glyphosate herbicide is often supplied as a trimethylsulfonium salt. When mixed with aluminium bromide, or aluminium chloride or even hydrogen bromide, trimethylsulfonium bromide forms an ionic liquid, which melts ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

S-Adenosylmethionine
''S''-Adenosyl methionine (SAM), also known under the commercial names of SAMe, SAM-e, or AdoMet, is a common cosubstrate involved in methyl group transfers, transsulfuration, and aminopropylation. Although these anabolic reactions occur throughout the body, most SAM is produced and consumed in the liver. More than 40 methyl transfers from SAM are known, to various substrates such as nucleic acids, proteins, lipids and secondary metabolites. It is made from adenosine triphosphate (ATP) and methionine by methionine adenosyltransferase. SAM was first discovered by Giulio Cantoni in 1952. In bacteria, SAM is bound by the SAM riboswitch, which regulates genes involved in methionine or cysteine biosynthesis. In eukaryotic cells, SAM serves as a regulator of a variety of processes including DNA, tRNA, and rRNA methylation; immune response; amino acid metabolism; transsulfuration; and more. In plants, SAM is crucial to the biosynthesis of ethylene, an important plant hormone and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Organic Solvent
A solvent (s) (from the Latin '' solvō'', "loosen, untie, solve") is a substance that dissolves a solute, resulting in a solution. A solvent is usually a liquid but can also be a solid, a gas, or a supercritical fluid. Water is a solvent for polar molecules and the most common solvent used by living things; all the ions and proteins in a cell are dissolved in water within the cell. The quantity of solute that can dissolve in a specific volume of solvent varies with temperature. Major uses of solvents are in paints, paint removers, inks, and dry cleaning. Specific uses for organic solvents are in dry cleaning (e.g. tetrachloroethylene); as paint thinners (toluene, turpentine); as nail polish removers and solvents of glue (acetone, methyl acetate, ethyl acetate); in spot removers (hexane, petrol ether); in detergents ( citrus terpenes); and in perfumes (ethanol). Solvents find various applications in chemical, pharmaceutical, oil, and gas industries, including in chemical synt ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cations
An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by convention. The net charge of an ion is not zero because its total number of electrons is unequal to its total number of protons. A cation is a positively charged ion with fewer electrons than protons while an anion is a negatively charged ion with more electrons than protons. Opposite electric charges are pulled towards one another by electrostatic force, so cations and anions attract each other and readily form ionic compounds. Ions consisting of only a single atom are termed atomic or monatomic ions, while two or more atoms form molecular ions or polyatomic ions. In the case of physical ionization in a fluid (gas or liquid), "ion pairs" are created by spontaneous molecule collisions, where each generated pair consists of a free electron a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Onium Compounds
In chemistry, an onium ion is a cation formally obtained by the protonation of mononuclear parent hydride of a pnictogen (group 15 of the periodic table), chalcogen (group 16), or halogen (group 17). The oldest-known onium ion, and the namesake for the class, is ammonium, , the protonated derivative of ammonia, . The name onium is also used for cations that would result from the substitution of hydrogen atoms in those ions by other groups, such as organic radicals, or halogens; such as tetraphenylphosphonium, . The substituent groups may be divalent or trivalent, yielding ions such as iminium and nitrilium. A simple onium ion has a charge of +1. A larger ion that has two onium ion subgroups is called a double onium ion, and has a charge of +2. A triple onium ion has a charge of +3, and so on. Compounds of an onium cation and some other anion are known as onium compounds or onium salts. Onium ions and onium compounds are inversely analogous to ions and ate complexes: * Lew ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Photoacid
Photoacids are molecules which become more acidic upon absorption of light. Either the light causes a photodissociation to produce a strong acid or the light causes photoassociation (such as a ring forming reaction) that leads to an increased acidity and dissociation of a proton. There are two main types of molecules that release protons upon illumination: photoacid generators (PAGs) and photoacids (PAHs). PAGs undergo proton photodissociation irreversibly, while PAHs are molecules that undergo proton photodissociation and thermal reassociation. In this latter case, the excited state is strongly acidic, but reversible. Photoacid generators An example due to photodissociation is triphenylsulfonium triflate. This colourless salt consists of a sulfonium cation and the triflate anion. Many related salts are known including those with other noncoordinating anions and those with diverse substituents on the phenyl rings. The triphenylsulfonium salts absorb at a wavelength of 233& ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]