Stretched Exponential Function
The stretched exponential function f_\beta (t) = e^ is obtained by inserting a fractional power law into the exponential function. In most applications, it is meaningful only for arguments between 0 and +∞. With , the usual exponential function is recovered. With a ''stretching exponent'' ''β'' between 0 and 1, the graph of log ''f'' versus ''t'' is characteristically ''stretched'', hence the name of the function. The compressed exponential function (with ) has less practical importance, with the notable exceptions of , which gives the normal distribution In probability theory and statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is f(x) = \frac ..., and of compressed exponential relaxation in the dynamics of amorphous solids. In mathematics, the stretched exponential is also known as the Cumulative distribution fun ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gamma Function
In mathematics, the gamma function (represented by Γ, capital Greek alphabet, Greek letter gamma) is the most common extension of the factorial function to complex numbers. Derived by Daniel Bernoulli, the gamma function \Gamma(z) is defined for all complex numbers z except non-positive integers, and for every positive integer z=n, \Gamma(n) = (n-1)!\,.The gamma function can be defined via a convergent improper integral for complex numbers with positive real part: \Gamma(z) = \int_0^\infty t^ e^\textt, \ \qquad \Re(z) > 0\,.The gamma function then is defined in the complex plane as the analytic continuation of this integral function: it is a meromorphic function which is holomorphic function, holomorphic except at zero and the negative integers, where it has simple Zeros and poles, poles. The gamma function has no zeros, so the reciprocal gamma function is an entire function. In fact, the gamma function corresponds to the Mellin transform of the negative exponential functi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Germans
Germans (, ) are the natives or inhabitants of Germany, or sometimes more broadly any people who are of German descent or native speakers of the German language. The Basic Law for the Federal Republic of Germany, constitution of Germany, implemented in 1949 following the end of World War II, defines a German as a German nationality law, German citizen. During the 19th and much of the 20th century, discussions on German identity were dominated by concepts of a common language, culture, descent, and history.. "German identity developed through a long historical process that led, in the late 19th and early 20th centuries, to the definition of the German nation as both a community of descent (Volksgemeinschaft) and shared culture and experience. Today, the German language is the primary though not exclusive criterion of German identity." Today, the German language is widely seen as the primary, though not exclusive, criterion of German identity. Estimates on the total number of Germ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algorithms (journal)
''Algorithms'' is a monthly peer-reviewed open-access scientific journal of mathematics, covering design, analysis, and experiments on algorithms. The journal is published by MDPI and was established in 2008. The founding editor-in-chief was Kazuo Iwama (Kyoto University). From May 2014 to September 2019, the editor-in-chief was Henning Fernau (Universität Trier). The current editor-in-chief is Frank Werner ( Otto-von-Guericke-Universität Magdeburg). Abstracting and indexing According to the ''Journal Citation Reports'', the journal has a 2022 impact factor of 2.3. The journal is abstracted and indexed in: See also Journals with similar scope include: *''ACM Transactions on Algorithms'' *''Algorithmica ''Algorithmica'' is a monthly peer-reviewed scientific journal focusing on research and the application of computer science algorithms. The journal was established in 1986 and is published by Springer Science+Business Media. The editor in chief i ...'' *'' Journal of Algorith ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fox–Wright Function
In mathematics, the Fox–Wright function (also known as Fox–Wright Psi function, not to be confused with Wright Omega function) is a generalisation of the generalised hypergeometric function ''p''''F''''q''(''z'') based on ideas of and : _p\Psi_q \left begin ( a_1 , A_1 ) & ( a_2 , A_2 ) & \ldots & ( a_p , A_p ) \\ ( b_1 , B_1 ) & ( b_2 , B_2 ) & \ldots & ( b_q , B_q ) \end ; z \right= \sum_^\infty \frac \, \frac . Upon changing the normalisation _p\Psi^*_q \left begin ( a_1 , A_1 ) & ( a_2 , A_2 ) & \ldots & ( a_p , A_p ) \\ ( b_1 , B_1 ) & ( b_2 , B_2 ) & \ldots & ( b_q , B_q ) \end ; z \right= \frac \sum_^\infty \frac \, \frac it becomes ''p''''F''''q''(''z'') for ''A''1...''p'' = ''B''1...''q'' = 1. The Fox–Wright function is a special case of the Fox H-function : _p\Psi_q \left begin ( a_1 , A_1 ) & ( a_2 , A_2 ) & \ldots & ( a_p , A_p ) \\ ( b_1 , B_1 ) & ( b_2 , B_2 ) & \ldots & ( b_q , B_q ) \end ; z \right= H^_ \left \begin ( 1-a_1 , A_1 ) & ( 1-a_2 , A_ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Euler Constant
Euler's constant (sometimes called the Euler–Mascheroni constant) is a mathematical constant, usually denoted by the lowercase Greek letter gamma (), defined as the limiting difference between the harmonic series and the natural logarithm, denoted here by : \begin \gamma &= \lim_\left(-\log n + \sum_^n \frac1\right)\\ px&=\int_1^\infty\left(-\frac1x+\frac1\right)\,\mathrm dx. \end Here, represents the floor function. The numerical value of Euler's constant, to 50 decimal places, is: History The constant first appeared in a 1734 paper by the Swiss mathematician Leonhard Euler, titled ''De Progressionibus harmonicis observationes'' (Eneström Index 43), where he described it as "worthy of serious consideration". Euler initially calculated the constant's value to 6 decimal places. In 1781, he calculated it to 16 decimal places. Euler used the notations and for the constant. The Italian mathematician Lorenzo Mascheroni attempted to calculate the constant to 32 dec ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
KWW Dist
KWW may refer to: * The Kohlrausch-Williams-Watts function is the Fourier transform of the stretched exponential function The stretched exponential function f_\beta (t) = e^ is obtained by inserting a fractional power law into the exponential function. In most applications, it is meaningful only for arguments between 0 and +∞. With , the usual exponential functi ... * Katosi Water Works, water treatment facility in Uganda * Krekel van der Woerd Wouterse, Dutch management consultants from 1960 to 1996 * Kwinti language (by ISO 639-3 language code) {{disambig ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dirac Delta Function
In mathematical analysis, the Dirac delta function (or distribution), also known as the unit impulse, is a generalized function on the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one. Thus it can be Heuristic, represented heuristically as \delta (x) = \begin 0, & x \neq 0 \\ , & x = 0 \end such that \int_^ \delta(x) dx=1. Since there is no function having this property, modelling the delta "function" rigorously involves the use of limit (mathematics), limits or, as is common in mathematics, measure theory and the theory of distribution (mathematics), distributions. The delta function was introduced by physicist Paul Dirac, and has since been applied routinely in physics and engineering to model point masses and instantaneous impulses. It is called the delta function because it is a continuous analogue of the Kronecker delta function, which is usually defined on a discrete domain and takes values ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Logarithm
In mathematics, the logarithm of a number is the exponent by which another fixed value, the base, must be raised to produce that number. For example, the logarithm of to base is , because is to the rd power: . More generally, if , then is the logarithm of to base , written , so . As a single-variable function, the logarithm to base is the inverse of exponentiation with base . The logarithm base is called the ''decimal'' or ''common'' logarithm and is commonly used in science and engineering. The ''natural'' logarithm has the number as its base; its use is widespread in mathematics and physics because of its very simple derivative. The ''binary'' logarithm uses base and is widely used in computer science, information theory, music theory, and photography. When the base is unambiguous from the context or irrelevant it is often omitted, and the logarithm is written . Logarithms were introduced by John Napier in 1614 as a means of simplifying calculation ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Linear
In mathematics, the term ''linear'' is used in two distinct senses for two different properties: * linearity of a '' function'' (or '' mapping''); * linearity of a '' polynomial''. An example of a linear function is the function defined by f(x)=(ax,bx) that maps the real line to a line in the Euclidean plane R2 that passes through the origin. An example of a linear polynomial in the variables X, Y and Z is aX+bY+cZ+d. Linearity of a mapping is closely related to '' proportionality''. Examples in physics include the linear relationship of voltage and current in an electrical conductor ( Ohm's law), and the relationship of mass and weight. By contrast, more complicated relationships, such as between velocity and kinetic energy, are '' nonlinear''. Generalized for functions in more than one dimension, linearity means the property of a function of being compatible with addition and scaling, also known as the superposition principle. Linearity of a polynomial means that its de ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Chemical Physics
Chemical physics is a branch of physics that studies chemical processes from a physical point of view. It focuses on understanding the physical properties and behavior of chemical systems, using principles from both physics and chemistry. This field investigates physicochemical phenomena using techniques from atomic and molecular physics and condensed matter physics. The United States Department of Education defines chemical physics as "A program that focuses on the scientific study of structural phenomena combining the disciplines of physical chemistry and atomic/molecular physics. Includes instruction in heterogeneous structures, alignment and surface phenomena, quantum theory, mathematical physics, statistical and classical mechanics, chemical kinetics, and laser physics." Distinction between chemical physics and physical chemistry While at the interface of physics and chemistry, chemical physics is distinct from physical chemistry as it focuses more on using physical ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Journal Of Chemical Physics
''The Journal of Chemical Physics'' is a scientific journal published by the American Institute of Physics that carries research papers on chemical physics."About the Journal" from the ''Journal of Chemical Physics'' website. Two volumes, each of 24 issues, are published annually. It was established in 1933 when '''' editors refused to publish theoretical works. The editors have been: *2019–present: Tim Lian *2008–2018: Marsha I. Lester *2007–2008: [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |