HOME





Spherical 3-manifold
In mathematics, a spherical 3-manifold ''M'' is a 3-manifold of the form :M=S^3/\Gamma where \Gamma is a finite subgroup of O(4) acting freely by rotations on the 3-sphere S^3. All such manifolds are prime, orientable, and closed. Spherical 3-manifolds are sometimes called elliptic 3-manifolds. Properties A special case of the Bonnet–Myers theorem says that every smooth manifold which has a smooth Riemannian metric which is both geodesically complete and of constant positive curvature must be closed and have finite fundamental group. William Thurston's elliptization conjecture, proven by Grigori Perelman using Richard Hamilton's Ricci flow, states a converse: every closed three-dimensional manifold with finite fundamental group has a smooth Riemannian metric of constant positive curvature. (This converse is special to three dimensions.) As such, the spherical three-manifolds are precisely the closed 3-manifolds with finite fundamental group. According to Synge's theorem, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Elliptization Conjecture
William Thurston's elliptization conjecture states that a closed 3-manifold with finite fundamental group is spherical, i.e. has a Riemannian metric of constant positive sectional curvature. Relation to other conjectures A 3-manifold with a Riemannian metric of constant positive sectional curvature is covered by the 3-sphere, moreover the group of covering transformations are isometries of the 3-sphere. If the original 3-manifold had in fact a trivial fundamental group, then it is homeomorphic to the 3-sphere (via the covering map). Thus, proving the elliptization conjecture would prove the Poincaré conjecture as a corollary. In fact, the elliptization conjecture is logically equivalent to two simpler conjectures: the Poincaré conjecture and the spherical space form conjecture. The elliptization conjecture is a special case of Thurston's geometrization conjecture, which was proved in 2003 by G. Perelman. References For the proof of the conjectures, see the references in the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lens Space
A lens space is an example of a topological space, considered in mathematics. The term often refers to a specific class of 3-manifolds, but in general can be defined for higher dimensions. In the 3-manifold case, a lens space can be visualized as the result of gluing two solid tori together by a homeomorphism of their boundaries. Often the 3-sphere and S^2 \times S^1, both of which can be obtained as above, are not counted as they are considered trivial special cases. The three-dimensional lens spaces L(p;q) were introduced by Heinrich Tietze in 1908. They were the first known examples of 3-manifolds which were not determined by their homology and fundamental group alone, and the simplest examples of closed manifolds whose homeomorphism type is not determined by their homotopy type. J. W. Alexander in 1919 showed that the lens spaces L(5;1) and L(5;2) were not homeomorphic even though they have isomorphic fundamental groups and the same homology, though they do not have ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cyclic Group
In abstract algebra, a cyclic group or monogenous group is a Group (mathematics), group, denoted C_n (also frequently \Z_n or Z_n, not to be confused with the commutative ring of P-adic number, -adic numbers), that is Generating set of a group, generated by a single element. That is, it is a set (mathematics), set of Inverse element, invertible elements with a single associative binary operation, and it contains an element g such that every other element of the group may be obtained by repeatedly applying the group operation to g or its inverse. Each element can be written as an integer Exponentiation, power of g in multiplicative notation, or as an integer multiple of g in additive notation. This element g is called a ''Generating set of a group, generator'' of the group. Every infinite cyclic group is isomorphic to the additive group \Z, the integers. Every finite cyclic group of Order (group theory), order n is isomorphic to the additive group of Quotient group, Z/''n''Z, the in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Geometrization Conjecture
In mathematics, Thurston's geometrization conjecture (now a theorem) states that each of certain three-dimensional topological spaces has a unique geometric structure that can be associated with it. It is an analogue of the uniformization theorem for two-dimensional surfaces, which states that every simply connected Riemann surface can be given one of three geometries ( Euclidean, spherical, or hyperbolic). In three dimensions, it is not always possible to assign a single geometry to a whole topological space. Instead, the geometrization conjecture states that every closed 3-manifold can be decomposed in a canonical way into pieces that each have one of eight types of geometric structure. The conjecture was proposed by as part of his 24 questions, and implies several other conjectures, such as the Poincaré conjecture and Thurston's elliptization conjecture. Thurston's hyperbolization theorem implies that Haken manifolds satisfy the geometrization conjecture. Thurston ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Icosahedral Group
In mathematics, and especially in geometry, an object has icosahedral symmetry if it has the same symmetries as a regular icosahedron. Examples of other polyhedra with icosahedral symmetry include the regular dodecahedron (the dual of the icosahedron) and the rhombic triacontahedron. Every polyhedron with icosahedral symmetry has 60 rotational (or orientation-preserving) symmetries and 60 orientation-reversing symmetries (that combine a rotation and a reflection), for a total symmetry order of 120. The full symmetry group is the Coxeter group of type . It may be represented by Coxeter notation and Coxeter diagram . The set of rotational symmetries forms a subgroup that is isomorphic to the alternating group on 5 letters. As point group Apart from the two infinite series of prismatic and antiprismatic symmetry, rotational icosahedral symmetry or chiral icosahedral symmetry of chiral objects and full icosahedral symmetry or achiral icosahedral symmetry are the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Octahedral Group
A regular octahedron has 24 rotational (or orientation-preserving) symmetries, and 48 symmetries altogether. These include transformations that combine a reflection and a rotation. A cube has the same set of symmetries, since it is the polyhedron that is dual polyhedron, dual to an octahedron. The group of orientation-preserving symmetries is S4, the symmetric group or the group of permutations of four objects, since there is exactly one such symmetry for each permutation of the four diagonals of the cube. Details Chiral and full (or achiral) octahedral symmetry are the Point groups in three dimensions, discrete point symmetries (or equivalently, List of spherical symmetry groups, symmetries on the sphere) with the largest symmetry groups compatible with translational symmetry. They are among the Crystal system#Overview of point groups by crystal system, crystallographic point groups of the cubic crystal system. As the hyperoctahedral group of dimension 3 the full octah ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tetrahedral Group
150px, A regular tetrahedron, an example of a solid with full tetrahedral symmetry A regular tetrahedron has 12 rotational (or orientation-preserving) symmetries, and a symmetry order of 24 including transformations that combine a reflection and a rotation. The group of all (not necessarily orientation preserving) symmetries is isomorphic to the group S4, the symmetric group of permutations of four objects, since there is exactly one such symmetry for each permutation of the vertices of the tetrahedron. The set of orientation-preserving symmetries forms a group referred to as the alternating subgroup A4 of S4. Details Chiral and full (or achiral tetrahedral symmetry and pyritohedral symmetry) are discrete point symmetries (or equivalently, symmetries on the sphere). They are among the crystallographic point groups of the cubic crystal system. Seen in stereographic projection the edges of the tetrakis hexahedron form 6 circles (or centrally radial lines) in the plane. E ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dihedral Group
In mathematics, a dihedral group is the group (mathematics), group of symmetry, symmetries of a regular polygon, which includes rotational symmetry, rotations and reflection symmetry, reflections. Dihedral groups are among the simplest examples of finite groups, and they play an important role in group theory, geometry, and chemistry. The notation for the dihedral group differs in geometry and abstract algebra. In geometry, or refers to the symmetries of the n-gon, -gon, a group of order . In abstract algebra, refers to this same dihedral group. This article uses the geometric convention, . Definition The word "dihedral" comes from "di-" and "-hedron". The latter comes from the Greek word hédra, which means "face of a geometrical solid". Overall it thus refers to the two faces of a polygon. Elements A regular polygon with n sides has 2n different symmetries: n rotational symmetry, rotational symmetries and n reflection symmetry, reflection symmetries. Usually, we take n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cyclic Group
In abstract algebra, a cyclic group or monogenous group is a Group (mathematics), group, denoted C_n (also frequently \Z_n or Z_n, not to be confused with the commutative ring of P-adic number, -adic numbers), that is Generating set of a group, generated by a single element. That is, it is a set (mathematics), set of Inverse element, invertible elements with a single associative binary operation, and it contains an element g such that every other element of the group may be obtained by repeatedly applying the group operation to g or its inverse. Each element can be written as an integer Exponentiation, power of g in multiplicative notation, or as an integer multiple of g in additive notation. This element g is called a ''Generating set of a group, generator'' of the group. Every infinite cyclic group is isomorphic to the additive group \Z, the integers. Every finite cyclic group of Order (group theory), order n is isomorphic to the additive group of Quotient group, Z/''n''Z, the in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

SO(4)
In mathematics, the group (mathematics), group of rotations about a fixed point in four-dimensional space, four-dimensional Euclidean space is denoted SO(4). The name comes from the fact that it is the special orthogonal group of order 4. In this article ''rotation (mathematics), rotation'' means ''rotational displacement''. For the sake of uniqueness, rotation angles are assumed to be in the segment except where mentioned or clearly implied by the context otherwise. A "fixed plane" is a plane for which every vector in the plane is unchanged after the rotation. An "invariant plane" is a plane for which every vector in the plane, although it may be affected by the rotation, remains in the plane after the rotation. Geometry of 4D rotations Four-dimensional rotations are of two types: simple rotations and double rotations. Simple rotations A simple rotation about a rotation centre leaves an entire plane through (axis-plane) fixed. Every plane that is completely orthogonal to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Synge's Theorem
In mathematics, specifically Riemannian geometry, Synge's theorem is a classical result relating the curvature of a Riemannian manifold to its topology. It is named for John Lighton Synge, who proved it in 1936. Theorem and sketch of proof Let be a closed Riemannian manifold with positive sectional curvature. The theorem asserts: * If is even-dimensional and orientable, then is simply connected. * If is odd-dimensional, then it is orientable. In particular, a closed manifold of even dimension can support a positively curved Riemannian metric only if its fundamental group has one or two elements. The proof of Synge's theorem can be summarized as follows. Given a geodesic with an orthogonal and parallel vector field along the geodesic (i.e. a parallel section of the normal bundle to the geodesic), then Synge's earlier computation of the ''second variation formula'' for arclength shows immediately that the geodesic may be deformed so as to shorten its length. The only tool u ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]