Simplicial Abelian Group
In mathematics, more precisely, in the theory of simplicial sets, a simplicial group is a simplicial object in the category of groups. Similarly, a simplicial abelian group is a simplicial object in the category of abelian groups. A simplicial group is a Kan complex (in particular, its homotopy groups make sense). The Dold–Kan correspondence says that a simplicial abelian group may be identified with a chain complex. In fact it can be shown that any simplicial abelian group A is non-canonically homotopy equivalent to a product of Eilenberg–MacLane spaces, \prod_ K(\pi_iA,i). A commutative monoid in the category of simplicial abelian groups is a simplicial commutative ring. discusses a simplicial analogue of the fact that a cohomology class on a Kähler manifold has a unique harmonic representative and deduces Kirchhoff's circuit laws from these observations. See also *Simplicial commutative ring References * * * Charles Weibel Charles Alexander Weibel (born October ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Commutative Monoid
In abstract algebra, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being . Monoids are semigroups with identity. Such algebraic structures occur in several branches of mathematics. The functions from a set into itself form a monoid with respect to function composition. More generally, in category theory, the morphisms of an object to itself form a monoid, and, conversely, a monoid may be viewed as a category with a single object. In computer science and computer programming, the set of strings built from a given set of characters is a free monoid. Transition monoids and syntactic monoids are used in describing finite-state machines. Trace monoids and history monoids provide a foundation for process calculi and concurrent computing. In theoretical computer science, the study of monoids is fundamental for automata theory (Krohn–Rhodes ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Commentarii Mathematici Helvetici
The ''Commentarii Mathematici Helvetici'' is a quarterly peer-reviewed scientific journal in mathematics. The Swiss Mathematical Society (SMG) started the journal in 1929 after a meeting in May of the previous year. The Swiss Mathematical Society still owns and operates the journal; the publishing is currently handled on its behalf by the European Mathematical Society. The scope of the journal includes research articles in all aspects in mathematics. The editors-in-chief have been Rudolf Fueter (1929–1949), J.J. Burckhardt (1950–1981), P. Gabriel (1982–1989), H. Kraft (1990–2005), and Eva Bayer-Fluckiger (2006–present). Abstracting and indexing The journal is abstracted and indexed in: According to the ''Journal Citation Reports'', the journal has a 2019 impact factor of 0.854. History The idea for a society-owned research journal emerged in June 1926, when the SMG petitioned the Swiss Confederation for a CHF 3,500 subsidy "to establish its own scientific jour ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Simplicial Commutative Ring
In algebra, a simplicial commutative ring is a monoid object, commutative monoid in the category (mathematics), category of simplicial abelian groups, or, equivalently, a simplicial object in the category of commutative rings. If ''A'' is a simplicial commutative ring, then it can be shown that \pi_0 A is a commutative ring, ring and \pi_i A are module (mathematics), modules over that ring (in fact, \pi_* A is a graded ring over \pi_0 A.) A topology-counterpart of this notion is a commutative ring spectrum. Examples *The ring of polynomial differential forms on simplexes. Graded ring structure Let ''A'' be a simplicial commutative ring. Then the ring structure of ''A'' gives \pi_* A = \oplus_ \pi_i A the structure of a graded-commutative graded ring as follows. By the Dold–Kan correspondence, \pi_* A is the homology of the chain complex corresponding to ''A''; in particular, it is a graded abelian group. Next, to multiply two elements, writing S^1 for the simplicial sphere ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Kirchhoff's Circuit Laws
Kirchhoff's circuit laws are two equalities that deal with the current and potential difference (commonly known as voltage) in the lumped element model of electrical circuits. They were first described in 1845 by German physicist Gustav Kirchhoff. This generalized the work of Georg Ohm and preceded the work of James Clerk Maxwell. Widely used in electrical engineering, they are also called Kirchhoff's rules or simply Kirchhoff's laws. These laws can be applied in time and frequency domains and form the basis for network analysis. Both of Kirchhoff's laws can be understood as corollaries of Maxwell's equations in the low-frequency limit. They are accurate for DC circuits, and for AC circuits at frequencies where the wavelengths of electromagnetic radiation are very large compared to the circuits. Kirchhoff's current law This law, also called Kirchhoff's first law, or Kirchhoff's junction rule, states that, for any node (junction) in an electrical circuit, the sum of cur ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Harmonic Function
In mathematics, mathematical physics and the theory of stochastic processes, a harmonic function is a twice continuously differentiable function f\colon U \to \mathbb R, where is an open subset of that satisfies Laplace's equation, that is, \frac + \frac + \cdots + \frac = 0 everywhere on . This is usually written as \nabla^2 f = 0 or \Delta f = 0 Etymology of the term "harmonic" The descriptor "harmonic" in the name "harmonic function" originates from a point on a taut string which is undergoing harmonic motion. The solution to the differential equation for this type of motion can be written in terms of sines and cosines, functions which are thus referred to as "harmonics." Fourier analysis involves expanding functions on the unit circle in terms of a series of these harmonics. Considering higher dimensional analogues of the harmonics on the unit ''n''-sphere, one arrives at the spherical harmonics. These functions satisfy Laplace's equation and, over time, "harmon ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Kähler Manifold
In mathematics and especially differential geometry, a Kähler manifold is a manifold with three mutually compatible structures: a complex structure, a Riemannian structure, and a symplectic structure. The concept was first studied by Jan Arnoldus Schouten and David van Dantzig in 1930, and then introduced by Erich Kähler in 1933. The terminology has been fixed by André Weil. Kähler geometry refers to the study of Kähler manifolds, their geometry and topology, as well as the study of structures and constructions that can be performed on Kähler manifolds, such as the existence of special connections like Hermitian Yang–Mills connections, or special metrics such as Kähler–Einstein metrics. Every smooth complex projective variety is a Kähler manifold. Hodge theory is a central part of algebraic geometry, proved using Kähler metrics. Definitions Since Kähler manifolds are equipped with several compatible structures, they can be described from different points of vi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cohomology Class
In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed as a method of assigning richer algebraic invariants to a space than homology. Some versions of cohomology arise by dualizing the construction of homology. In other words, cochains are functions on the group of chains in homology theory. From its start in topology, this idea became a dominant method in the mathematics of the second half of the twentieth century. From the initial idea of homology as a method of constructing algebraic invariants of topological spaces, the range of applications of homology and cohomology theories has spread throughout geometry and algebra. The terminology tends to hide the fact that cohomology, a contravariant theory, is more natural than homology in many applications. At a basic level, this has to do wi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Simplicial Commutative Ring
In algebra, a simplicial commutative ring is a monoid object, commutative monoid in the category (mathematics), category of simplicial abelian groups, or, equivalently, a simplicial object in the category of commutative rings. If ''A'' is a simplicial commutative ring, then it can be shown that \pi_0 A is a commutative ring, ring and \pi_i A are module (mathematics), modules over that ring (in fact, \pi_* A is a graded ring over \pi_0 A.) A topology-counterpart of this notion is a commutative ring spectrum. Examples *The ring of polynomial differential forms on simplexes. Graded ring structure Let ''A'' be a simplicial commutative ring. Then the ring structure of ''A'' gives \pi_* A = \oplus_ \pi_i A the structure of a graded-commutative graded ring as follows. By the Dold–Kan correspondence, \pi_* A is the homology of the chain complex corresponding to ''A''; in particular, it is a graded abelian group. Next, to multiply two elements, writing S^1 for the simplicial sphere ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Category (mathematics)
In mathematics, a category (sometimes called an abstract category to distinguish it from a concrete category) is a collection of "objects" that are linked by "arrows". A category has two basic properties: the ability to compose the arrows associatively and the existence of an identity arrow for each object. A simple example is the category of sets, whose objects are sets and whose arrows are functions. ''Category theory'' is a branch of mathematics that seeks to generalize all of mathematics in terms of categories, independent of what their objects and arrows represent. Virtually every branch of modern mathematics can be described in terms of categories, and doing so often reveals deep insights and similarities between seemingly different areas of mathematics. As such, category theory provides an alternative foundation for mathematics to set theory and other proposed axiomatic foundations. In general, the objects and arrows may be abstract entities of any kind, and the n ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Eilenberg–MacLane Space
In mathematics, specifically algebraic topology, an Eilenberg–MacLane spaceSaunders Mac Lane originally spelt his name "MacLane" (without a space), and co-published the papers establishing the notion of Eilenberg–MacLane spaces under this name. (See e.g. ) In this context it is therefore conventional to write the name without a space. is a topological space with a single nontrivial homotopy group. Let ''G'' be a group and ''n'' a positive integer. A connected topological space ''X'' is called an Eilenberg–MacLane space of type K(G,n), if it has ''n''-th homotopy group \pi_n(X) isomorphic to ''G'' and all other homotopy groups trivial. Assuming that ''G'' is abelian in the case that n > 1, Eilenberg–MacLane spaces of type K(G,n) always exist, and are all weak homotopy equivalent. Thus, one may consider K(G,n) as referring to a weak homotopy equivalence class of spaces. It is common to refer to any representative as "a K(G,n)" or as "a model of K(G,n)". Moreover, it is comm ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Simplicial Set
In mathematics, a simplicial set is a sequence of sets with internal order structure ( abstract simplices) and maps between them. Simplicial sets are higher-dimensional generalizations of directed graphs. Every simplicial set gives rise to a "nice" topological space, known as its geometric realization. This realization consists of geometric simplices, glued together according to the rules of the simplicial set. Indeed, one may view a simplicial set as a purely combinatorial construction designed to capture the essence of a topological space for the purposes of homotopy theory. Specifically, the category of simplicial sets carries a natural model structure, and the corresponding homotopy category is equivalent to the familiar homotopy category of topological spaces. Formally, a simplicial set may be defined as a contravariant functor from the simplex category to the category of sets. Simplicial sets were introduced in 1950 by Samuel Eilenberg and Joseph A. Zilber. Simplic ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |