Schubert Calculus
In mathematics, Schubert calculus is a branch of algebraic geometry introduced in the nineteenth century by Hermann Schubert in order to solve various counting problems of projective geometry and, as such, is viewed as part of enumerative geometry. Giving it a more rigorous foundation was the aim of Hilbert's 15th problem. It is related to several more modern concepts, such as characteristic classes, and both its algorithmic aspects and applications remain of current interest. The term Schubert calculus is sometimes used to mean the enumerative geometry of linear subspaces of a vector space, which is roughly equivalent to describing the cohomology ring of Grassmannians. Sometimes it is used to mean the more general enumerative geometry of algebraic varieties that are homogenous spaces of simple Lie groups. Even more generally, Schubert calculus is sometimes understood as encompassing the study of analogous questions in generalized cohomology theories. The objects introduced ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Schubert Varieties
In algebraic geometry, a Schubert variety is a certain subvariety of a Grassmannian, \mathbf_k(V) of k-dimensional subspaces of a vector space V, usually with singular points. Like the Grassmannian, it is a kind of moduli space, whose elements satisfy conditions giving lower bounds to the dimensions of the intersections of its elements w\subset V, with the elements of a specified complete flag. Here V may be a vector space over an arbitrary field, but most commonly this taken to be either the real or the complex numbers. A typical example is the set X of 2-dimensional subspaces w \subset V of a 4-dimensional space V that intersect a fixed (reference) 2-dimensional subspace V_2 nontrivially. :X \ =\ \. Over the real number field, this can be pictured in usual ''xyz''-space as follows. Replacing subspaces with their corresponding projective spaces, and intersecting with an affine coordinate patch of \mathbb(V), we obtain an open subset ''X''° ⊂ ''X''. This is isomorphic to ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Giambelli Formula
In mathematics, Giambelli's formula, named after Giovanni Giambelli, expresses Schubert classes as determinants in terms of special Schubert classes. It states :\displaystyle \sigma_\lambda= \det(\sigma_)_ where σλ is the Schubert class of a partition λ. Giambelli's formula may be derived as a consequence of Pieri's formula. The Porteous formula is a generalization to morphisms of vector bundles over a variety. In the theory of symmetric functions, the same identity, known as the first Jacobi-Trudi identity expresses Schur functions as determinants in terms of complete symmetric functions. There is also the dual second Jacobi-Trudi identity which expresses Schur functions as determinants in terms of elementary symmetric functions. The corresponding identity also holds for Schubert classes. There is another Giambelli identity, expressing Schur functions as determinants of matrices whose entries are Schur functions corresponding to ''hook partit ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Linear Span
In mathematics, the linear span (also called the linear hull or just span) of a set S of elements of a vector space V is the smallest linear subspace of V that contains S. It is the set of all finite linear combinations of the elements of , and the intersection of all linear subspaces that contain S. It is often denoted pp. 29-30, §§ 2.5, 2.8 or \langle S \rangle. For example, in geometry, two linearly independent vectors span a plane. To express that a vector space is a linear span of a subset , one commonly uses one of the following phrases: spans ; is a spanning set of ; is spanned or generated by ; is a generator set or a generating set of . Spans can be generalized to many mathematical structures, in which case, the smallest substructure containing S is generally called the substructure ''generated'' by S. Definition Given a vector space over a field , the span of a set of vectors (not necessarily finite) is defined to be the intersection of all subsp ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cellular Homology
In mathematics, cellular homology in algebraic topology is a homology theory for the category of CW-complexes. It agrees with singular homology, and can provide an effective means of computing homology modules. Definition If X is a CW-complex with ''n''-skeleton X_ , the cellular-homology modules are defined as the homology groups ''Hi'' of the cellular chain complex : \cdots \to (X_,X_) \to (X_,X_) \to (X_,X_) \to \cdots, where X_ is taken to be the empty set. The group : (X_,X_) is free abelian, with generators that can be identified with the n -cells of X . Let e_^ be an n -cell of X , and let \chi_^: \partial e_^ \cong \mathbb^ \to X_ be the attaching map. Then consider the composition : \chi_^: \mathbb^ \, \stackrel \, \partial e_^ \, \stackrel \, X_ \, \stackrel \, X_ / \left( X_ \setminus e_^ \right) \, \stackr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Zariski Topology
In algebraic geometry and commutative algebra, the Zariski topology is a topology defined on geometric objects called varieties. It is very different from topologies that are commonly used in real or complex analysis; in particular, it is not Hausdorff. This topology was introduced primarily by Oscar Zariski and later generalized for making the set of prime ideals of a commutative ring (called the spectrum of the ring) a topological space. The Zariski topology allows tools from topology to be used to study algebraic varieties, even when the underlying field is not a topological field. This is one of the basic ideas of scheme theory, which allows one to build general algebraic varieties by gluing together affine varieties in a way similar to that in manifold theory, where manifolds are built by gluing together charts, which are open subsets of real affine spaces. The Zariski topology of an algebraic variety is the topology whose closed sets are the algebraic subsets of t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Young Diagram
In mathematics, a Young tableau (; plural: tableaux) is a combinatorial object useful in representation theory and Schubert calculus. It provides a convenient way to describe the group representations of the symmetric and general linear groups and to study their properties. Young tableaux were introduced by Alfred Young, a mathematician at Cambridge University, in 1900. They were then applied to the study of the symmetric group by Georg Frobenius in 1903. Their theory was further developed by many mathematicians, including Percy MacMahon, W. V. D. Hodge, G. de B. Robinson, Gian-Carlo Rota, Alain Lascoux, Marcel-Paul Schützenberger and Richard P. Stanley. Definitions ''Note: this article uses the English convention for displaying Young diagrams and tableaux''. Diagrams A Young diagram (also called a Ferrers diagram, particularly when represented using dots) is a finite collection of boxes, or cells, arranged in left-justified rows, with the row lengths in non-in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Partition (number Theory)
In number theory and combinatorics, a partition of a non-negative integer , also called an integer partition, is a way of writing as a sum of positive integers. Two sums that differ only in the order of their summands are considered the same partition. (If order matters, the sum becomes a composition.) For example, can be partitioned in five distinct ways: : : : : : The only partition of zero is the empty sum, having no parts. The order-dependent composition is the same partition as , and the two distinct compositions and represent the same partition as . An individual summand in a partition is called a part. The number of partitions of is given by the partition function . So . The notation means that is a partition of . Partitions can be graphically visualized with Young diagrams or Ferrers diagrams. They occur in a number of branches of mathematics and physics, including the study of symmetric polynomials and of the symmetric group and in group representatio ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Flag Manifold
In mathematics, a generalized flag variety (or simply flag variety) is a homogeneous space whose points are flags in a finite-dimensional vector space ''V'' over a field F. When F is the real or complex numbers, a generalized flag variety is a smooth or complex manifold, called a real or complex flag manifold. Flag varieties are naturally projective varieties. Flag varieties can be defined in various degrees of generality. A prototype is the variety of complete flags in a vector space ''V'' over a field F, which is a flag variety for the special linear group over F. Other flag varieties arise by considering partial flags, or by restriction from the special linear group to subgroups such as the symplectic group. For partial flags, one needs to specify the sequence of dimensions of the flags under consideration. For subgroups of the linear group, additional conditions must be imposed on the flags. In the most general sense, a generalized flag variety is defined to mean a projective ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Chow Ring
In algebraic geometry, the Chow groups (named after Wei-Liang Chow by ) of an algebraic variety over any field are algebro-geometric analogs of the homology of a topological space. The elements of the Chow group are formed out of subvarieties (so-called algebraic cycles) in a similar way to how simplicial or cellular homology groups are formed out of subcomplexes. When the variety is smooth, the Chow groups can be interpreted as cohomology groups (compare Poincaré duality) and have a multiplication called the intersection product. The Chow groups carry rich information about an algebraic variety, and they are correspondingly hard to compute in general. Rational equivalence and Chow groups For what follows, define a variety over a field k to be an integral scheme of finite type over k. For any scheme X of finite type over k, an algebraic cycle on X means a finite linear combination of subvarieties of X with integer coefficients. (Here and below, subvarieties are understood ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Block Matrix
In mathematics, a block matrix or a partitioned matrix is a matrix that is interpreted as having been broken into sections called blocks or submatrices. Intuitively, a matrix interpreted as a block matrix can be visualized as the original matrix with a collection of horizontal and vertical lines, which break it up, or partition it, into a collection of smaller matrices. For example, the 3x4 matrix presented below is divided by horizontal and vertical lines into four blocks: the top-left 2x3 block, the top-right 2x1 block, the bottom-left 1x3 block, and the bottom-right 1x1 block. : \left \begin a_ & a_ & a_ & b_ \\ a_ & a_ & a_ & b_ \\ \hline c_ & c_ & c_ & d \end \right Any matrix may be interpreted as a block matrix in one or more ways, with each interpretation defined by how its rows and columns are partitioned. This notion can be made more precise for an n by m matrix M by partitioning n into a collection \text, and then partitioning m into a collection \text. The original m ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Borel Subgroup
In the theory of algebraic groups, a Borel subgroup of an algebraic group ''G'' is a maximal Zariski closed and connected solvable algebraic subgroup. For example, in the general linear group ''GLn'' (''n x n'' invertible matrices), the subgroup of invertible upper triangular matrices is a Borel subgroup. For groups realized over algebraically closed fields, there is a single conjugacy class of Borel subgroups. Borel subgroups are one of the two key ingredients in understanding the structure of simple (more generally, reductive) algebraic groups, in Jacques Tits' theory of groups with a (''B'', ''N'') pair. Here the group ''B'' is a Borel subgroup and ''N'' is the normalizer of a maximal torus contained in ''B''. The notion was introduced by Armand Borel, who played a leading role in the development of the theory of algebraic groups. Parabolic subgroups Subgroups between a Borel subgroup ''B'' and the ambient group ''G'' are called parabolic subgroups. Parabolic subgr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |