HOME



picture info

SMASS Classification
An asteroid spectral type is assigned to asteroids based on their reflectance spectrum, color, and sometimes albedo. These types are thought to correspond to an asteroid's surface composition. For small bodies that are not internally differentiated, the surface and internal compositions are presumably similar, while large bodies such as Ceres and Vesta are known to have internal structure. Over the years, there has been a number of surveys that resulted in a set of different taxonomic systems such as the Tholen, SMASS and Bus–DeMeo classifications. Taxonomic systems In 1975, astronomers Clark R. Chapman, David Morrison, and Ben Zellner developed a simple taxonomic system for asteroids based on color, albedo, and spectral shape. The three categories were labelled " C" for dark carbonaceous objects, " S" for stony (siliceous) objects, and "U" for those that did not fit into either C or S. This basic division of asteroid spectra has since been expanded and clarified.T ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Asteroid Populations By Orbital Distance
An asteroid is a minor planet—an object larger than a meteoroid that is neither a planet nor an identified comet—that orbits within the Solar System#Inner Solar System, inner Solar System or is co-orbital with Jupiter (Trojan asteroids). Asteroids are rocky, metallic, or icy bodies with no atmosphere, and are broadly classified into C-type asteroid, C-type (carbonaceous), M-type asteroid, M-type (metallic), or S-type asteroid, S-type (silicaceous). The size and shape of asteroids vary significantly, ranging from small rubble piles under a kilometer across to Ceres (dwarf planet), Ceres, a dwarf planet almost 1000 km in diameter. A body is classified as a comet, not an asteroid, if it shows a coma (tail) when warmed by solar radiation, although recent observations suggest a continuum between these types of bodies. Of the roughly one million known asteroids, the greatest number are located between the orbits of Mars and Jupiter, approximately 2 to 4 astronomical unit, AU ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




A-type Asteroid
A-type asteroids are relatively uncommon inner-belt asteroids that have a strong, broad 1 micrometre, μm olivine feature and a very reddish spectrum shortwards of 0.7 μm. They are thought to come from the completely differentiated Mantle (geology), mantle of an asteroid, and appear to have a high density. One survey found that 7 similar A-, V-type asteroid, V- and X-type asteroid, X-type asteroids had an average density of .P. Vernazza et al. (2021) VLT/SPHERE imaging survey of the largest main-belt asteroids: Final results and synthesis. ''Astronomy & Astrophysics'' 54, A56 List A-type asteroids are so rare that as of August 2024, only 17 had been discovered: See also *Asteroid spectral types References External links Mineralogic and Temperature-Induced Spectral Investigations of A-type Asteroids: (246) Asporina and (446) Aeternitas
Vishnu Vardhan Reddy, V. Reddy, Lunar and Planetary Science XXXVI (2005) Asteroid spectral classes A-type asteroids, {{belt ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


K-type Asteroid
K-type asteroids are relatively uncommon asteroids with a moderately reddish spectrum shortwards of 0.75 μm, and a slight bluish trend longwards of this. They have a low albedo. Their spectrum resembles that of CV and CO meteorites. A larger K type is 9 Metis. These asteroids were described as "featureless" S-types in the Tholen classification. The K-type was proposed by J. F. Bell and colleagues in 1988 for bodies having a particularly shallow 1 μm absorption feature, and lacking the 2 μm absorption. These were found during studies of the Eos family of asteroids. See also *Asteroid spectral types An asteroid spectral type is assigned to asteroids based on their reflectance spectrum, color, and sometimes Astronomical albedo, albedo. These types are thought to correspond to an asteroid's surface composition. For small bodies that are not p ... * L-type asteroid * S-type asteroid * X-type asteroid * 181 Eucharis * 221 Eos * 402 Chloë * 417 Suevia ReferencesJ. F. Bell ' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


V-type Asteroid
A V-type (volcanic-type) asteroid, or Vestoid, is an asteroid whose spectral type is that of 4 Vesta. Approximately 6% of main-belt asteroids are vestoids, with Vesta being by far the largest of them. They are relatively bright, and rather similar to the more common S-type asteroid, which are also made up of stony irons and ordinary chondrites, with V-types containing more pyroxene than S-types. A large proportion of vestoids have orbital elements similar to those of Vesta, either close enough to be part of the Vesta family, or having similar eccentricities and inclinations but with a semi-major axis lying between about 2.18 AU and the 3:1 Kirkwood gap at 2.50 AU. This suggests that they originated as fragments of Vesta's crust. There seem to be two populations of Vestoids, one created 2 billion years ago and the other 1 billion years ago, coming respectively from the enormous southern-hemisphere craters Veneneia and Rheasilvia. Fragments that ended up in the 3:1 Jupiter resona ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


T-type Asteroid
T-type asteroids are rare inner-belt asteroids of unknown composition with dark, featureless and moderately red spectra, and a moderate absorption feature shortwards of 0.85 μm. No direct meteorite analog has been found to date. Thought to be anhydrous, they are considered to be related to P-types or D-types, or possibly a highly altered C-type. Examples of T-type asteroids include 96 Aegle, 114 Kassandra, 233 Asterope, and 308 Polyxo. The infrared spectrum of the first three are similar to the mineral troilite, while 308 Polyxo is modified with hydration features. In 2010, the asteroid 596 Scheila was impacted by a projectile. The impact changed its spectrum from T-type to D-type, likely by exposing fresh material that was not weathered. See also *Asteroid spectral types An asteroid spectral type is assigned to asteroids based on their reflectance spectrum, color, and sometimes Astronomical albedo, albedo. These types are thought to correspond to an asteroid's su ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




R-type Asteroid
R-type asteroids are moderately bright, relatively uncommon inner-belt asteroids that are spectrally intermediate between the V and A-type asteroids. The spectrum shows distinct olivine and pyroxene features at 1 and 2 micrometres, with a possibility of plagioclase. Shortwards of 0.7 μm the spectrum is very reddish. The IRAS mission has classified 4 Vesta, 246 Asporina, 349 Dembowska, 571 Dulcinea and 937 Bethgea as type R; however, the re-classification of Vesta, the V archetype, is debatable. Of these bodies, only 349 Dembowska is recognized as being type R when all wavelengths are taken into account. List As of February 2019, at least 5 asteroids have been classified as R-type: References See also *Asteroid spectral types An asteroid spectral type is assigned to asteroids based on their reflectance spectrum, color, and sometimes Astronomical albedo, albedo. These types are thought to correspond to an asteroid's surface composition. For small bodies that are not p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Q-type Asteroid
Q-type asteroids are relatively uncommon inner-belt asteroids with a strong, broad 1 micrometre olivine and pyroxene feature, and a spectral slope that indicates the presence of metal. There are absorption features shortwards and longwards of 0.7 μm, and the spectrum is generally intermediate between the V and S-type. Q-type asteroids are spectrally more similar to ordinary chondrite meteorites (types H, L, LL) than any other asteroid type. This has led scientists to speculate that they are abundant, but only about 20 of this type has been characterized. Examples of Q-type asteroids are: 1862 Apollo, 2102 Tantalus, 3753 Cruithne, 6489 Golevka, and 9969 Braille. See also *Asteroid spectral types An asteroid spectral type is assigned to asteroids based on their reflectance spectrum, color, and sometimes Astronomical albedo, albedo. These types are thought to correspond to an asteroid's surface composition. For small bodies that are not p ... References A ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


X-type Asteroid
The X-group of asteroids collects together several types with similar spectra, but probably quite different compositions. Tholen classification In the Tholen classification, the X-group consists of the following types: * E-type – with high albedo (> 0.30), composed of enstatite, forsterite and feldspar. They are found in the inner main belt. * M-type – the largest grouping, intermediate albedo, "metallic", composed of iron and nickel, thought to be the progenitors of nickel–iron meteorites. They are found around 3.0 AU and in the Hungaria region (innermost main-belt). * P-type – low albedos (< 0.10) with featureless red spectra; presumably composed of carbonaceous chondrites, and found in the outer main-belt and the Jupiter trojan region. Since in this scheme, the albedo is crucial in discriminating between the above types, some objects for which albedo information was not available were assigned an X-type. An example of this is 50 Virginia. SMASS cl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


P-type Asteroid
P-type (primitive-type) asteroids have low albedo and a featureless reddish spectrum. It has been suggested that they have a composition of organic-rich silicates, carbon and anhydrous silicates, possibly with water ice in their interior. P-type asteroids are found in the outer asteroid belt and beyond. There are about 33 known P-type asteroids, depending on the classification, including 46 Hestia, 65 Cybele, 76 Freia, 87 Sylvia, 153 Hilda, 476 Hedwig and, in some classifications, 107 Camilla. Taxonomy An early system of asteroid taxonomy was established in 1975 from the doctoral thesis work of David J. Tholen. This was based upon observations of a group of 110 asteroids. The U-type classification was used as a miscellaneous class for asteroids with unusual spectra that did not fit into the C and S-type asteroid classifications. In 1976, some of these U-type asteroids with unusual moderate albedo levels were labeled as M-type. Around 1981, an offshoot of the M-type asteroi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

M-type Asteroid
M-type (metallic-type, aka M-class) asteroids are a spectral class of asteroids which appear to contain higher concentrations of metal phases (e.g. iron-nickel) than other asteroid classes, and are widely thought to be the source of iron meteorites. Definition Asteroids are classified as M-type based upon their generally featureless and flat to red-sloped absorption spectra in the visible to near-infrared and their moderate optical albedo. Along with the spectrally similar E-type and P-type asteroids (both categories E and P were formerly type-M in older systems), they are included in the larger X-type asteroid group and are distinguishable only by optical albedo: : Characteristics Composition Although widely assumed to be metal-rich (the reason for use of "M" in the classification), the evidence for a high metal content in the M-type asteroids is only indirect, though highly plausible. Their spectra are similar to those of iron meteorites and enstatite chondrites, and rada ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




E-type Asteroid
E-type (enstatite achondrite–type) asteroids are asteroids thought to have enstatite (MgSiO3) achondrite surfaces. They form a large proportion of asteroids inward of the asteroid belt known as Hungaria asteroids, but rapidly become very rare as the asteroid belt proper is entered. Some are quite far from the inner edge of the asteroid belt, such as 64 Angelina. They are thought to have originated from the highly reduced mantle of a differentiated asteroid. Description E-type asteroids have a high albedo (0.3 or higher), which distinguishes them from the more common M-type asteroids. Their spectrum is featureless flat to reddish. Probably because they originated from the edge of a larger parent body rather than a core, E-types are all small, with only three (44 Nysa, 55 Pandora, 64 Angelina) having diameters above 50 kilometres and no others above 25 kilometers (the biggest three also orbit atypically far, c. 3 AU, from the Sun). Aubrites (enstatite achondrite meteorite ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


D-type Asteroid
D-type asteroids have a very low albedo and a featureless reddish spectrum. It has been suggested that they have a composition of organic-rich silicates, carbon and anhydrous silicates, possibly with water ice in their interiors. D-type asteroids are found in the outer asteroid belt The asteroid belt is a torus-shaped region in the Solar System, centered on the Sun and roughly spanning the space between the orbits of the planets Jupiter and Mars. It contains a great many solid, irregularly shaped bodies called asteroids ... and beyond; examples are 152 Atala, 944 Hidalgo and most Jupiter trojans. It has been suggested that the Tagish Lake meteorite was a fragment from a D-type asteroid, and that the Martian moon Phobos is closely related. The Nice model suggests that D-type asteroids may have originated in the Kuiper belt. 46 D-type asteroids are known, including: 3552 Don Quixote, 944 Hidalgo, 624 Hektor, and 10199 Chariklo. Examples A list of some of th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]