HOME





Ree Group
In mathematics, a Ree group is a group of Lie type over a finite field, finite field (mathematics), field constructed by from an exceptional automorphism of a Dynkin diagram that reverses the direction of the multiple bonds, generalizing the Suzuki groups found by Suzuki using a different method. They were the last of the infinite families of finite simple groups to be discovered. Unlike the Steinberg group (Lie theory), Steinberg groups, the Ree groups are not given by the points of a connected reductive algebraic group defined over a finite field; in other words, there is no "Ree algebraic group" related to the Ree groups in the same way that (say) unitary groups are related to Steinberg groups. However, there are some exotic pseudo-reductive algebraic groups over non-perfect fields whose construction is related to the construction of Ree groups, as they use the same exotic automorphisms of Dynkin diagrams that change root lengths. defined Ree groups over infinite fields of cha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Janko Group
In the area of modern algebra known as group theory, the Janko groups are the four sporadic simple groups '' J1'', '' J2'', '' J3'' and '' J4'' introduced by Zvonimir Janko. Unlike the Mathieu groups, Conway groups, or Fischer groups, the Janko groups do not form a series, and the relation among the four groups is mainly historical rather than mathematical. History Janko constructed the first of these groups, ''J''1, in 1965 and predicted the existence of ''J''2 and ''J''3. In 1976, he suggested the existence of ''J''4. Later, ''J''2, ''J''3 and ''J''4 were all shown to exist. ''J''1 was the first sporadic simple group discovered in nearly a century: until then only the Mathieu groups were known, ''M''11 and ''M''12 having been found in 1861, and ''M''22, ''M''23 and ''M''24 in 1873. The discovery of ''J''1 caused a great "sensation" and "surprise"The group theorist Bertram Huppert said of ''J''1: "There were a very few things that surprised me in my life... There ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bulletin Of The American Mathematical Society
The ''Bulletin of the American Mathematical Society'' is a quarterly mathematical journal published by the American Mathematical Society. Scope It publishes surveys on contemporary research topics, written at a level accessible to non-experts. It also publishes, by invitation only, book reviews and short ''Mathematical Perspectives'' articles. History It began as the ''Bulletin of the New York Mathematical Society'' and underwent a name change when the society became national. The Bulletin's function has changed over the years; its original function was to serve as a research journal for its members. Indexing The Bulletin is indexed in Mathematical Reviews, Science Citation Index, ISI Alerting Services, CompuMath Citation Index, and Current Contents/Physical, Chemical & Earth Sciences. See also *'' Journal of the American Mathematical Society'' *'' Memoirs of the American Mathematical Society'' *'' Notices of the American Mathematical Society'' *'' Proceedings of the Ame ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Journal Of Algebra
''Journal of Algebra'' (ISSN 0021-8693) is an international mathematical research journal in algebra. An imprint of Academic Press, it is published by Elsevier Elsevier ( ) is a Dutch academic publishing company specializing in scientific, technical, and medical content. Its products include journals such as ''The Lancet'', ''Cell (journal), Cell'', the ScienceDirect collection of electronic journals, .... ''Journal of Algebra'' was founded by Graham Higman, who was its editor from 1964 to 1984. From 1985 until 2000, Walter Feit served as its editor-in-chief. In 2004, ''Journal of Algebra'' announced (vol. 276, no. 1 and 2) the creation of a new section on computational algebra, with a separate editorial board. The first issue completely devoted to computational algebra was vol. 292, no. 1 (October 2005). The Editor-in-Chief of the ''Journal of Algebra'' is Michel Broué, Université Paris Diderot, and Gerhard Hiß, Rheinisch-Westfälische Technische Hochschule Aachen ( R ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Inventiones Mathematicae
''Inventiones Mathematicae'' is a mathematical journal published monthly by Springer Science+Business Media. It was established in 1966 and is regarded as one of the most prestigious mathematics journals in the world. The current (2023) managing editors are Jean-Benoît Bost (University of Paris-Sud) and Wilhelm Schlag (Yale University Yale University is a Private university, private Ivy League research university in New Haven, Connecticut, United States. Founded in 1701, Yale is the List of Colonial Colleges, third-oldest institution of higher education in the United Stat ...). Abstracting and indexing The journal is abstracted and indexed in: References External links *{{Official website, https://www.springer.com/journal/222 Mathematics journals Academic journals established in 1966 English-language journals Springer Science+Business Media academic journals Monthly journals ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

John Wiley & Sons
John Wiley & Sons, Inc., commonly known as Wiley (), is an American Multinational corporation, multinational Publishing, publishing company that focuses on academic publishing and instructional materials. The company was founded in 1807 and produces books, Academic journal, journals, and encyclopedias, in print and electronically, as well as online products and services, training materials, and educational materials for undergraduate, graduate, and continuing education students. History The company was established in 1807 when Charles Wiley opened a print shop in Manhattan. The company was the publisher of 19th century American literary figures like James Fenimore Cooper, Washington Irving, Herman Melville, and Edgar Allan Poe, as well as of legal, religious, and other non-fiction titles. The firm took its current name in 1865. Wiley later shifted its focus to scientific, Technology, technical, and engineering subject areas, abandoning its literary interests. Wiley's son Joh ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


List Of Finite Simple Groups
In mathematics, the classification of finite simple groups states that every finite simple group is cyclic, or alternating, or in one of 16 families of groups of Lie type, or one of 26 sporadic groups. The list below gives all finite simple groups, together with their order, the size of the Schur multiplier, the size of the outer automorphism group, usually some small representations, and lists of all duplicates. Summary The following table is a complete list of the 18 families of finite simple groups and the 26 sporadic simple groups, along with their orders. Any non-simple members of each family are listed, as well as any members duplicated within a family or between families. (In removing duplicates it is useful to note that no two finite simple groups have the same order, except that the group A8 = ''A''3(2) and ''A''2(4) both have order 20160, and that the group ''Bn''(''q'') has the same order as ''Cn''(''q'') for ''q'' odd, ''n'' > 2. The small ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Moufang Octagon
In mathematics, Moufang polygons are a generalization by Jacques Tits of the Moufang planes studied by Ruth Moufang, and are irreducible buildings of rank two that admit the action of root groups. In a book on the topic, Tits and Richard Weiss classify them all. An earlier theorem, proved independently by Tits and Weiss, showed that a Moufang polygon must be a generalized 3-gon, 4-gon, 6-gon, or 8-gon, so the purpose of the aforementioned book was to analyze these four cases. Definitions *A generalized ''n''-gon is a bipartite graph of diameter ''n'' and girth 2''n''. *A graph is called thick if all vertices have valence at least 3. *A root of a generalized ''n''-gon is a path of length ''n''. *An apartment of a generalized ''n''-gon is a cycle of length 2''n''. *The root subgroup of a root is the subgroup of automorphisms of a graph that fix all vertices adjacent to one of the inner vertices of the root. *A Moufang ''n''-gon is a thick generalized ''n''-gon (with ''n''>2) such ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


BN Pair
In mathematics, a (''B'', ''N'') pair is a structure on groups of Lie type that allows one to give uniform proofs of many results, instead of giving a large number of case-by-case proofs. Roughly speaking, it shows that all such groups are similar to the general linear group over a field. They were introduced by the mathematician Jacques Tits, and are also sometimes known as Tits systems. Definition A (''B'', ''N'') pair is a pair of subgroups ''B'' and ''N'' of a group ''G'' such that the following axioms hold: * ''G'' is generated by ''B'' and ''N''. * The intersection, ''T'', of ''B'' and ''N'' is a normal subgroup of ''N''. *The group ''W'' = ''N''/''T'' is generated by a set ''S'' of elements of order 2 such that **If ''s'' is an element of ''S'' and ''w'' is an element of ''W'' then ''sBw'' is contained in the union of ''BswB'' and ''BwB''. **No element of ''S'' normalizes ''B''. The set ''S'' is uniquely determined by ''B'' and ''N'' and the pair (''W'',''S'') is a Cox ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Coxeter Group
In mathematics, a Coxeter group, named after H. S. M. Coxeter, is an abstract group that admits a formal description in terms of reflections (or kaleidoscopic mirrors). Indeed, the finite Coxeter groups are precisely the finite Euclidean reflection groups; for example, the symmetry group of each regular polyhedron is a finite Coxeter group. However, not all Coxeter groups are finite, and not all can be described in terms of symmetries and Euclidean reflections. Coxeter groups were introduced in 1934 as abstractions of reflection groups, and finite Coxeter groups were classified in 1935. Coxeter groups find applications in many areas of mathematics. Examples of finite Coxeter groups include the symmetry groups of regular polytopes, and the Weyl groups of simple Lie algebras. Examples of infinite Coxeter groups include the triangle groups corresponding to regular tessellations of the Euclidean plane and the hyperbolic plane, and the Weyl groups of infinite-dimensional ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Outer Automorphism Group
In mathematics, the outer automorphism group of a group, , is the quotient, , where is the automorphism group of and ) is the subgroup consisting of inner automorphisms. The outer automorphism group is usually denoted . If is trivial and has a trivial center, then is said to be complete. An automorphism of a group that is not inner is called an outer automorphism. The cosets of with respect to outer automorphisms are then the elements of ; this is an instance of the fact that quotients of groups are not, in general, (isomorphic to) subgroups. If the inner automorphism group is trivial (when a group is abelian), the automorphism group and outer automorphism group are naturally identified; that is, the outer automorphism group does act on the group. For example, for the alternating group, , the outer automorphism group is usually the group of order 2, with exceptions noted below. Considering as a subgroup of the symmetric group, , conjugation by any odd permutation is a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Schur Multiplier
In mathematical group theory, the Schur multiplier or Schur multiplicator is the second homology group H_2(G, \Z) of a group ''G''. It was introduced by in his work on projective representations. Examples and properties The Schur multiplier \operatorname(G) of a finite group ''G'' is a finite abelian group whose exponent divides the order of ''G''. If a Sylow ''p''-subgroup of ''G'' is cyclic for some ''p'', then the order of \operatorname(G) is not divisible by ''p''. In particular, if all Sylow ''p''-subgroups of ''G'' are cyclic, then \operatorname(G) is trivial. For instance, the Schur multiplier of the nonabelian group of order 6 is the trivial group since every Sylow subgroup is cyclic. The Schur multiplier of the elementary abelian group of order 16 is an elementary abelian group of order 64, showing that the multiplier can be strictly larger than the group itself. The Schur multiplier of the quaternion group is trivial, but the Schur multiplier of dihedral 2-grou ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]