Reduced Product
In model theory, a branch of mathematical logic, and in algebra, the reduced product is a construction that generalizes both direct product and ultraproduct. Let be a nonempty family of structures of the same signature σ indexed by a set ''I'', and let ''U'' be a proper filter on ''I''. The domain of the reduced product is the quotient of the Cartesian product :\prod_ S_i by a certain equivalence relation ~: two elements (''ai'') and (''bi'') of the Cartesian product are equivalent if :\left\\in U If ''U'' only contains ''I'' as an element, the equivalence relation is trivial, and the reduced product is just the direct product. If ''U'' is an ultrafilter, the reduced product is an ultraproduct. Operations from σ are interpreted on the reduced product by applying the operation pointwise. Relations are interpreted by :R((a^1_i)/,\dots,(a^n_i)/) \iff \\in U. For example, if each structure is a vector space In mathematics and physics, a vector space (also cal ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Model Theory
In mathematical logic, model theory is the study of the relationship between theory (mathematical logic), formal theories (a collection of Sentence (mathematical logic), sentences in a formal language expressing statements about a Structure (mathematical logic), mathematical structure), and their Structure (mathematical logic), models (those Structure (mathematical logic), structures in which the statements of the theory hold). The aspects investigated include the number and size of models of a theory, the relationship of different models to each other, and their interaction with the formal language itself. In particular, model theorists also investigate the sets that can be definable set, defined in a model of a theory, and the relationship of such definable sets to each other. As a separate discipline, model theory goes back to Alfred Tarski, who first used the term "Theory of Models" in publication in 1954. Since the 1970s, the subject has been shaped decisively by Saharon Shel ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematical Logic
Mathematical logic is the study of Logic#Formal logic, formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory (also known as computability theory). Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics. Since its inception, mathematical logic has both contributed to and been motivated by the study of foundations of mathematics. This study began in the late 19th century with the development of axiomatic frameworks for geometry, arithmetic, and Mathematical analysis, analysis. In the early 20th century it was shaped by David Hilbert's Hilbert's program, program to prove the consistency of foundational theories. Results of Kurt Gödel, Gerhard Gentzen, and others provided partial resolution to th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebra
Algebra is a branch of mathematics that deals with abstract systems, known as algebraic structures, and the manipulation of expressions within those systems. It is a generalization of arithmetic that introduces variables and algebraic operations other than the standard arithmetic operations, such as addition and multiplication. Elementary algebra is the main form of algebra taught in schools. It examines mathematical statements using variables for unspecified values and seeks to determine for which values the statements are true. To do so, it uses different methods of transforming equations to isolate variables. Linear algebra is a closely related field that investigates linear equations and combinations of them called '' systems of linear equations''. It provides methods to find the values that solve all equations in the system at the same time, and to study the set of these solutions. Abstract algebra studies algebraic structures, which consist of a set of mathemati ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Direct Product
In mathematics, a direct product of objects already known can often be defined by giving a new one. That induces a structure on the Cartesian product of the underlying sets from that of the contributing objects. The categorical product is an abstraction of these notions in the setting of category theory. Examples are the product of sets, groups (described below), rings, and other algebraic structures. The product of topological spaces is another instance. The direct sum is a related operation that agrees with the direct product in some but not all cases. Examples * If \R is thought of as the set of real numbers without further structure, the direct product \R \times \R is just the Cartesian product \. * If \R is thought of as the group of real numbers under addition, the direct product \R\times \R still has \ as its underlying set. The difference between this and the preceding examples is that \R \times \R is now a group and so how to add their elements must also be s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ultraproduct
The ultraproduct is a mathematical construction that appears mainly in abstract algebra and mathematical logic, in particular in model theory and set theory. An ultraproduct is a quotient of the direct product of a family of structures. All factors need to have the same signature. The ultrapower is the special case of this construction in which all factors are equal. For example, ultrapowers can be used to construct new fields from given ones. The hyperreal numbers, an ultrapower of the real numbers, are a special case of this. Some striking applications of ultraproducts include very elegant proofs of the compactness theorem and the completeness theorem, Keisler's ultrapower theorem, which gives an algebraic characterization of the semantic notion of elementary equivalence, and the Robinson–Zakon presentation of the use of superstructures and their monomorphisms to construct nonstandard models of analysis, leading to the growth of the area of nonstandard analysis, which was ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Structure (mathematical Logic)
In universal algebra and in model theory, a structure consists of a set along with a collection of finitary operations and relations that are defined on it. Universal algebra studies structures that generalize the algebraic structures such as groups, rings, fields and vector spaces. The term universal algebra is used for structures of first-order theories with no relation symbols. Model theory has a different scope that encompasses more arbitrary first-order theories, including foundational structures such as models of set theory. From the model-theoretic point of view, structures are the objects used to define the semantics of first-order logic, cf. also Tarski's theory of truth or Tarskian semantics. For a given theory in model theory, a structure is called a model if it satisfies the defining axioms of that theory, although it is sometimes disambiguated as a '' semantic model'' when one discusses the notion in the more general setting of mathematical models. Log ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Signature (logic)
In logic, especially mathematical logic, a signature lists and describes the non-logical symbols of a formal language. In universal algebra, a signature lists the operations that characterize an algebraic structure. In model theory, signatures are used for both purposes. They are rarely made explicit in more philosophical treatments of logic. Definition Formally, a (single-sorted) signature can be defined as a 4-tuple \sigma = \left(S_, S_, S_, \operatorname\right), where S_ and S_ are disjoint sets not containing any other basic logical symbols, called respectively * '' function symbols'' (examples: +, \times), * ''s'' or '' predicates'' (examples: \,\leq, \, \in), * '' constant symbols'' (examples: 0, 1), and a function \operatorname : S_ \cup S_ \to \N which assigns a natural number called ''arity'' to every function or relation symbol. A function or relation symbol is called n-ary if its arity is n. Some authors define a nullary (0-ary) function symbol as ''constant symbol'', ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Filter (mathematics)
In mathematics, a filter or order filter is a special subset of a partially ordered set (poset), describing "large" or "eventual" elements. Filters appear in order and lattice theory, but also topology, whence they originate. The notion dual to a filter is an order ideal. Special cases of filters include ultrafilters, which are filters that cannot be enlarged, and describe nonconstructive techniques in mathematical logic. Filters on sets were introduced by Henri Cartan in 1937. Nicolas Bourbaki, in their book '' Topologie Générale'', popularized filters as an alternative to E. H. Moore and Herman L. Smith's 1922 notion of a net; order filters generalize this notion from the specific case of a power set under inclusion to arbitrary partially ordered sets. Nevertheless, the theory of power-set filters retains interest in its own right, in part for substantial applications in topology. Motivation Fix a partially ordered set (poset) . Intuitively, a filter& ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quotient Set
In mathematics, when the elements of some set S have a notion of equivalence (formalized as an equivalence relation), then one may naturally split the set S into equivalence classes. These equivalence classes are constructed so that elements a and b belong to the same equivalence class if, and only if, they are equivalent. Formally, given a set S and an equivalence relation \sim on S, the of an element a in S is denoted /math> or, equivalently, to emphasize its equivalence relation \sim, and is defined as the set of all elements in S with which a is \sim-related. The definition of equivalence relations implies that the equivalence classes form a partition of S, meaning, that every element of the set belongs to exactly one equivalence class. The set of the equivalence classes is sometimes called the quotient set or the quotient space of S by \sim, and is denoted by S /. When the set S has some structure (such as a group operation or a topology) and the equivalence re ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cartesian Product
In mathematics, specifically set theory, the Cartesian product of two sets and , denoted , is the set of all ordered pairs where is an element of and is an element of . In terms of set-builder notation, that is A\times B = \. A table can be created by taking the Cartesian product of a set of rows and a set of columns. If the Cartesian product is taken, the cells of the table contain ordered pairs of the form . One can similarly define the Cartesian product of sets, also known as an -fold Cartesian product, which can be represented by an -dimensional array, where each element is an -tuple. An ordered pair is a 2-tuple or couple. More generally still, one can define the Cartesian product of an indexed family of sets. The Cartesian product is named after René Descartes, whose formulation of analytic geometry gave rise to the concept, which is further generalized in terms of direct product. Set-theoretic definition A rigorous definition of the Cartesian product re ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Equivalence Relation
In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric, and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. A simpler example is equality. Any number a is equal to itself (reflexive). If a = b, then b = a (symmetric). If a = b and b = c, then a = c (transitive). Each equivalence relation provides a partition of the underlying set into disjoint equivalence classes. Two elements of the given set are equivalent to each other if and only if they belong to the same equivalence class. Notation Various notations are used in the literature to denote that two elements a and b of a set are equivalent with respect to an equivalence relation R; the most common are "a \sim b" and "", which are used when R is implicit, and variations of "a \sim_R b", "", or "" to specify R explicitly. Non-equivalence may be written "" or "a \not\equiv b". Definitions A binary relation \,\si ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ultrafilter
In the Mathematics, mathematical field of order theory, an ultrafilter on a given partially ordered set (or "poset") P is a certain subset of P, namely a Maximal element, maximal Filter (mathematics), filter on P; that is, a proper filter on P that cannot be enlarged to a bigger proper filter on P. If X is an arbitrary set, its power set (X), ordered by set inclusion, is always a Boolean algebra (structure), Boolean algebra and hence a poset, and ultrafilters on (X) are usually called X.If X happens to be partially ordered, too, particular care is needed to understand from the context whether an (ultra)filter on (X) or an (ultra)filter just on X is meant; both kinds of (ultra)filters are quite different. Some authors use "(ultra)filter ''of'' a partial ordered set" vs. "''on'' an arbitrary set"; i.e. they write "(ultra)filter on X" to abbreviate "(ultra)filter of (X)". An ultrafilter on a set X may be considered as a finitely additive 0-1-valued measure (mathematics), measure on ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |