Quasar 3C 273
   HOME



picture info

Quasar 3C 273
A quasar ( ) is an extremely luminous active galactic nucleus (AGN). It is sometimes known as a quasi-stellar object, abbreviated QSO. The emission from an AGN is powered by accretion onto a supermassive black hole with a mass ranging from millions to tens of billions of solar masses, surrounded by a gaseous accretion disc. Gas in the disc falling towards the black hole heats up and releases energy in the form of electromagnetic radiation. The radiant energy of quasars is enormous; the most powerful quasars have luminosities thousands of times greater than that of a galaxy such as the Milky Way. Quasars are usually categorized as a subclass of the more general category of AGN. The redshifts of quasars are of cosmological origin. The term originated as a contraction of "quasi-stellar '' tar-like' radio source"—because they were first identified during the 1950s as sources of radio-wave emission of unknown physical origin—and when identified in photographic images at visib ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Central Massive Object
A central massive object (CMO) is a high mass object or cluster of objects at the centre of a large star system, such as a galaxy or globular cluster. In the case of the former, the CMO may be a supermassive black hole, a nuclear star cluster, or even both together. The most massive galaxies are thought to always contain a supermassive black hole (SBH); these galaxies do not contain nuclear star clusters, and the CMO is identified with the SBH. Fainter galaxies usually contain a nuclear star cluster (NSC). In most of these galaxies, it is not known whether a supermassive black hole is present, and the CMO is identified with the NSC. A few galaxies, for instance the Milky Way and NGC 4395, are known to contain both a SBH and a NSC. Although this is suggestive that ''all'' galaxies have CMOs, and that a common mechanism of galaxy formation causes both, ESA MIRI scientist Torsten Böker observes that some galaxies appear to have neither SBHs nor NSCs. The mass associated with CM ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Galaxy Filament
In cosmology, galaxy filaments are the largest known structures in the universe, consisting of walls of galactic superclusters. These massive, thread-like formations can commonly reach 50 to 80 megaparsecs ()—with the largest found to date being the Hercules-Corona Borealis Great Wall at around in length—and form the boundaries between voids. Due to the accelerating expansion of the universe, the individual clusters of gravitationally bound galaxies that make up galaxy filaments are moving away from each other at an accelerated rate; in the far future they will dissolve. Galaxy filaments form the cosmic web and define the overall structure of the observable universe. Discovery Discovery of structures larger than superclusters began in the late 1980s. In 1987, astronomer R. Brent Tully of the University of Hawaii's Institute of Astronomy identified what he called the Pisces–Cetus Supercluster Complex. The CfA2 Great Wall was discovered in 1989, followed by the Sloa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Large Quasar Group
A large quasar group (LQG) is a collection of quasars (a form of supermassive black hole active galactic nuclei) that form what are thought to constitute the largest astronomical structures in the observable universe. LQGs are thought to be precursors to the sheets, walls and filaments of galaxies found in the relatively nearby universe. Prominent LQGs On January 11, 2013, the discovery of the Huge-LQG was announced by the University of Central Lancashire, as the largest known structure in the universe by that time. It is composed of 74 quasars and has a minimum diameter of 1.4 billion light-year A light-year, alternatively spelled light year (ly or lyr), is a unit of length used to express astronomical distances and is equal to exactly , which is approximately 9.46 trillion km or 5.88 trillion mi. As defined by the International Astr ...s, but over 4 billion light-years at its widest point. According to researcher and author, Roger Clowes, the existence of structures wi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Comoving And Proper Distances
In standard cosmology, comoving distance and proper distance (or physical distance) are two closely related distance measures used by cosmologists to define distances between objects. ''Comoving distance'' factors out the expansion of the universe, giving a distance that does not change in time except due to local factors, such as the motion of a galaxy within a cluster. ''Proper distance'' roughly corresponds to where a distant object would be at a specific moment of cosmological time, which can change over time due to the expansion of the universe. Comoving distance and proper distance are defined to be equal at the present time. At other times, the Universe's expansion results in the proper distance changing, while the comoving distance remains constant. Comoving coordinates Although general relativity allows the formulation of the laws of physics using arbitrary coordinates, some coordinate choices are easier to work with. Comoving coordinates are an example of such a coor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


UHZ1
UHZ1 is a background galaxy containing a quasar. At a redshift of approximately 10.1, UHZ1 is at a distance of 13.2 billion light-years, seen when our universe was about 3 percent of its current age. This redshift made it the most distant, and therefore earliest known quasar in the observable universe as of 2023. To detect this object, astronomers working at the Chandra X-ray Observatory used the Abell 2744's cluster mass as a gravitational lens A gravitational lens is matter, such as a galaxy cluster, cluster of galaxies or a point particle, that bends light from a distant source as it travels toward an observer. The amount of gravitational lensing is described by Albert Einstein's Ge ... in order to magnify distant objects directly behind it.200 Myr, or a massive seed. Data collected provides a clue to the seeding mechanism and supports it. UHZ1 as a potential first OBG candidate The Chandra X-ray source detected in UHZ1 is Compton-thick. It has a bolometric luminosity o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Light-year
A light-year, alternatively spelled light year (ly or lyr), is a unit of length used to express astronomical distances and is equal to exactly , which is approximately 9.46 trillion km or 5.88 trillion mi. As defined by the International Astronomical Union (IAU), a light-year is the distance that light travels in vacuum in one Julian year (365.25 days). Despite its inclusion of the word "year", the term should not be misinterpreted as a unit of time. The ''light-year'' is most often used when expressing distances to stars and other distances on a galactic scale, especially in non-specialist contexts and popular science publications. The unit most commonly used in professional astronomy is the parsec (symbol: pc, about 3.26 light-years). Definitions As defined by the International Astronomical Union (IAU), the light-year is the product of the Julian year (365.25 days, as opposed to the 365.2425-day Gregorian year or the 365.24219-day Tropical year that both approxim ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Markarian 231
Markarian 231 (UGC 8058) is a Type-1 Seyfert galaxy that was discovered in 1969 as part of a search for galaxies with strong ultraviolet radiation. It is named after the Armenian astronomer Benjamin Markarian, who played an active role in identifying and cataloging a number of active galaxies during the 1960s. Markarian 231 contains the nearest known quasar and is located about 581 million light years away from Earth, in the constellation of Ursa Major. Characteristics Markarian 231 is undergoing an energetic starburst. A nuclear ring at the center has an active rate of star formation of greater than 100 solar masses per year. It is one of the most ultraluminous infrared galaxies, with power derived from an accreting black hole in the center forming the closest known quasar. X-ray data shows the energy released from the black hole produces ultra-fast outflows with a velocity of −20,000 km s−1. The galaxy contains a curved radio jet interacting with the interstellar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Photometric Redshift
A photometric redshift is an estimate for the recession velocity of an astronomical object such as a galaxy or quasar, made without measuring its spectrum. The technique uses photometry (that is, the brightness of the object viewed through various standard filters, each of which lets through a relatively broad passband of colours, such as red light, green light, or blue light) to determine the redshift, and hence, through Hubble's law, the distance, of the observed object. The technique was developed in the 1960s, but was largely replaced in the 1970s and 1980s by spectroscopic redshifts, using spectroscopy to observe the frequency (or wavelength) of characteristic spectral lines, and measure the shift of these lines from their laboratory positions. The photometric redshift technique has come back into mainstream use since 2000, as a result of large sky surveys conducted in the late 1990s and 2000s which have detected a large number of faint high-redshift objects, and telescope ti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Astronomical Spectroscopy
Astronomical spectroscopy is the study of astronomy using the techniques of spectroscopy to measure the electromagnetic spectrum, spectrum of electromagnetic radiation, including Visible light astronomy, visible light, Ultraviolet astronomy, ultraviolet, X-ray astronomy, X-ray, Infrared astronomy, infrared and Radio astronomy, radio waves that radiant energy, radiate from stars and other celestial objects. A stellar spectrum can reveal many properties of stars, such as their chemical composition, temperature, density, mass, distance and luminosity. Spectroscopy can show the velocity of motion towards or away from the observer by measuring the Doppler effect, Doppler shift. Spectroscopy is also used to study the physical properties of many other types of celestial objects such as planets, nebulae, Galaxy, galaxies, and Active galactic nucleus, active galactic nuclei. Background Astronomical spectroscopy is used to measure three major bands of radiation in the electromagnetic spe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cosmic Dust
Cosmic dustalso called extraterrestrial dust, space dust, or star dustis dust that occurs in outer space or has fallen onto Earth. Most cosmic dust particles measure between a few molecules and , such as micrometeoroids (30 μm). Cosmic dust can be further distinguished by its astronomical location: intergalactic dust, interstellar dust, interplanetary dust (as in the zodiacal cloud), and circumplanetary dust (as in a planetary ring). There are several methods to obtain space dust measurement. In the Solar System, interplanetary dust causes the zodiacal light. Solar System dust includes comet dust, planetary dust (like from Mars), asteroidal dust, dust from the Kuiper belt, and interstellar dust passing through the Solar System. Thousands of tons of cosmic dust are estimated to reach Earth's surface every year, with most grains having a mass between 10−16 kg (0.1 pg) and 10−4 kg (0.1 g). The density of the dust cloud through which the Earth is traveling is approximately ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Extinction (astronomy)
In astronomy, extinction is the absorption (electromagnetic radiation), absorption and light scattering, scattering of electromagnetic radiation by dust and gas between an emitting astronomical object and the observation, observer. Interstellar extinction was first documented as such in 1930 by Robert Julius Trumpler. However, its effects had been noted in 1847 by Friedrich Georg Wilhelm von Struve, and its effect on the colors of stars had been observed by a number of individuals who did not connect it with the general presence of Cosmic dust, galactic dust. For stars lying near the plane of the Milky Way which are within a few thousand parsecs of the Earth, extinction in the visual band of frequencies (photometric system) is roughly 1.8 Magnitude (astronomy), magnitudes per kiloparsec. For Observatory#Ground-based_observatories, Earth-bound observers, extinction arises both from the interstellar medium and the Atmosphere of Earth, Earth's atmosphere; it may also arise fro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]