HOME
*



picture info

Poisson Bracket
In mathematics and classical mechanics, the Poisson bracket is an important binary operation in Hamiltonian mechanics, playing a central role in Hamilton's equations of motion, which govern the time evolution of a Hamiltonian dynamical system. The Poisson bracket also distinguishes a certain class of coordinate transformations, called ''canonical transformations'', which map canonical coordinate systems into canonical coordinate systems. A "canonical coordinate system" consists of canonical position and momentum variables (below symbolized by q_i and p_i, respectively) that satisfy canonical Poisson bracket relations. The set of possible canonical transformations is always very rich. For instance, it is often possible to choose the Hamiltonian itself H =H(q, p, t) as one of the new canonical momentum coordinates. In a more general sense, the Poisson bracket is used to define a Poisson algebra, of which the algebra of functions on a Poisson manifold is a special case. There are ot ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Simeon Poisson
Simeon () is a given name, from the Hebrew (Biblical Hebrew, Biblical ''Šimʿon'', Tiberian vocalization, Tiberian ''Šimʿôn''), usually transliterated as Shimon. In Greek it is written Συμεών, hence the Latinized spelling Symeon. Meaning The name is derived from Simeon (son of Jacob), Simeon, son of Jacob and Leah, patriarch of the Tribe of Simeon. The text of Book of Genesis, Genesis (29:33) argues that the name of ''Simeon'' refers to Leah's belief that Tetragrammaton, God had heard that she was hated by Jacob, in the sense of not being as favoured as Rachel. Implying a derivation from the Hebrew language, Hebrew term ''shama on'', meaning "he has heard"; this is a similar etymology as the Torah gives for the theophoric name ''Ishmael'' ("God has heard"; Genesis 16:11), on the basis of which it has been argued that the tribe of Simeon may originally have been an Ishmaelites, Ishmaelite group (Cheyne and Black, ''Encyclopaedia Biblica''). Alternatively, Hitzig, W. R. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bilinearity
In mathematics, a bilinear map is a function combining elements of two vector spaces to yield an element of a third vector space, and is linear in each of its arguments. Matrix multiplication is an example. Definition Vector spaces Let V, W and X be three vector spaces over the same base field F. A bilinear map is a function B : V \times W \to X such that for all w \in W, the map B_w v \mapsto B(v, w) is a linear map from V to X, and for all v \in V, the map B_v w \mapsto B(v, w) is a linear map from W to X. In other words, when we hold the first entry of the bilinear map fixed while letting the second entry vary, the result is a linear operator, and similarly for when we hold the second entry fixed. Such a map B satisfies the following properties. * For any \lambda \in F, B(\lambda v,w) = B(v, \lambda w) = \lambda B(v, w). * The map B is additive in both components: if v_1, v_2 \in V and w_1, w_2 \in W, then B(v_1 + v_2, w) = B(v_1, w) + B(v_2, w) and B(v, w_1 + w_2) = B(v ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Liouville's Theorem (Hamiltonian)
In physics, Liouville's theorem, named after the French mathematician Joseph Liouville, is a key theorem in classical statistical and Hamiltonian mechanics. It asserts that ''the phase-space distribution function is constant along the trajectories of the system''—that is that the density of system points in the vicinity of a given system point traveling through phase-space is constant with time. This time-independent density is in statistical mechanics known as the classical a priori probability. There are related mathematical results in symplectic topology and ergodic theory; systems obeying Liouville's theorem are examples of incompressible dynamical systems. There are extensions of Liouville's theorem to stochastic systems. Liouville equations The Liouville equation describes the time evolution of the ''phase space distribution function''. Although the equation is usually referred to as the "Liouville equation", Josiah Willard Gibbs was the first to recognize the impor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Canonical Transformation
In Hamiltonian mechanics, a canonical transformation is a change of canonical coordinates that preserves the form of Hamilton's equations. This is sometimes known as form invariance. It need not preserve the form of the Hamiltonian itself. Canonical transformations are useful in their own right, and also form the basis for the Hamilton–Jacobi equations (a useful method for calculating conserved quantities) and Liouville's theorem (itself the basis for classical statistical mechanics). Since Lagrangian mechanics is based on generalized coordinates, transformations of the coordinates do not affect the form of Lagrange's equations and, hence, do not affect the form of Hamilton's equations if we simultaneously change the momentum by a Legendre transformation into P_i=\frac. Therefore, coordinate transformations (also called point transformations) are a ''type'' of canonical transformation. However, the class of canonical transformations is much broader, since the old generalized ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Symplectomorphism
In mathematics, a symplectomorphism or symplectic map is an isomorphism in the category of symplectic manifolds. In classical mechanics, a symplectomorphism represents a transformation of phase space that is volume-preserving and preserves the symplectic structure of phase space, and is called a canonical transformation. Formal definition A diffeomorphism between two symplectic manifolds f: (M,\omega) \rightarrow (N,\omega') is called a symplectomorphism if :f^*\omega'=\omega, where f^* is the pullback of f. The symplectic diffeomorphisms from M to M are a (pseudo-)group, called the symplectomorphism group (see below). The infinitesimal version of symplectomorphisms gives the symplectic vector fields. A vector field X \in \Gamma^(TM) is called symplectic if :\mathcal_X\omega=0. Also, X is symplectic iff the flow \phi_t: M\rightarrow M of X is a symplectomorphism for every t. These vector fields build a Lie subalgebra of \Gamma^(TM). Here, \Gamma^(TM) is the set of smooth vector ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Flow (mathematics)
In mathematics, a flow formalizes the idea of the motion of particles in a fluid. Flows are ubiquitous in science, including engineering and physics. The notion of flow is basic to the study of ordinary differential equations. Informally, a flow may be viewed as a continuous motion of points over time. More formally, a flow is a group action of the real numbers on a set. The idea of a vector flow, that is, the flow determined by a vector field, occurs in the areas of differential topology, Riemannian geometry and Lie groups. Specific examples of vector flows include the geodesic flow, the Hamiltonian flow, the Ricci flow, the mean curvature flow, and Anosov flows. Flows may also be defined for systems of random variables and stochastic processes, and occur in the study of ergodic dynamical systems. The most celebrated of these is perhaps the Bernoulli flow. Formal definition A flow on a set is a group action of the additive group of real numbers on . More explicitl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Symplectic Manifold
In differential geometry, a subject of mathematics, a symplectic manifold is a smooth manifold, M , equipped with a closed nondegenerate differential 2-form \omega , called the symplectic form. The study of symplectic manifolds is called symplectic geometry or symplectic topology. Symplectic manifolds arise naturally in abstract formulations of classical mechanics and analytical mechanics as the cotangent bundles of manifolds. For example, in the Hamiltonian formulation of classical mechanics, which provides one of the major motivations for the field, the set of all possible configurations of a system is modeled as a manifold, and this manifold's cotangent bundle describes the phase space of the system. Motivation Symplectic manifolds arise from classical mechanics; in particular, they are a generalization of the phase space of a closed system. In the same way the Hamilton equations allow one to derive the time evolution of a system from a set of differential equations, the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hamilton's Equations
Hamiltonian mechanics emerged in 1833 as a reformulation of Lagrangian mechanics. Introduced by Sir William Rowan Hamilton, Hamiltonian mechanics replaces (generalized) velocities \dot q^i used in Lagrangian mechanics with (generalized) ''momenta''. Both theories provide interpretations of classical mechanics and describe the same physical phenomena. Hamiltonian mechanics has a close relationship with geometry (notably, symplectic geometry and Poisson structures) and serves as a link between classical and quantum mechanics. Overview Phase space coordinates (p,q) and Hamiltonian H Let (M, \mathcal L) be a mechanical system with the configuration space M and the smooth Lagrangian \mathcal L. Select a standard coordinate system (\boldsymbol,\boldsymbol) on M. The quantities \textstyle p_i(\boldsymbol,\boldsymbol,t) ~\stackrel~ / are called ''momenta''. (Also ''generalized momenta'', ''conjugate momenta'', and ''canonical momenta''). For a time instant t, the Legendre transformati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Chain Rule
In calculus, the chain rule is a formula that expresses the derivative of the composition of two differentiable functions and in terms of the derivatives of and . More precisely, if h=f\circ g is the function such that h(x)=f(g(x)) for every , then the chain rule is, in Lagrange's notation, :h'(x) = f'(g(x)) g'(x). or, equivalently, :h'=(f\circ g)'=(f'\circ g)\cdot g'. The chain rule may also be expressed in Leibniz's notation. If a variable depends on the variable , which itself depends on the variable (that is, and are dependent variables), then depends on as well, via the intermediate variable . In this case, the chain rule is expressed as :\frac = \frac \cdot \frac, and : \left.\frac\_ = \left.\frac\_ \cdot \left. \frac\_ , for indicating at which points the derivatives have to be evaluated. In integration, the counterpart to the chain rule is the substitution rule. Intuitive explanation Intuitively, the chain rule states that knowing the instantaneous rate of cha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hamilton's Equations Of Motion
Hamiltonian mechanics emerged in 1833 as a reformulation of Lagrangian mechanics. Introduced by Sir William Rowan Hamilton, Hamiltonian mechanics replaces (generalized) velocities \dot q^i used in Lagrangian mechanics with (generalized) ''momenta''. Both theories provide interpretations of classical mechanics and describe the same physical phenomena. Hamiltonian mechanics has a close relationship with geometry (notably, symplectic geometry and Poisson structures) and serves as a Hamilton-Jacobi equation, link between classical and quantum mechanics. Overview Phase space coordinates (p,q) and Hamiltonian H Let (M, \mathcal L) be a Lagrangian mechanics, mechanical system with the configuration space (physics), configuration space M and the smooth Lagrangian \mathcal L. Select a standard coordinate system (\boldsymbol,\boldsymbol) on M. The quantities \textstyle p_i(\boldsymbol,\boldsymbol,t) ~\stackrel~ / are called ''momenta''. (Also ''generalized momenta'', ''conjugate momenta'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kronecker Delta
In mathematics, the Kronecker delta (named after Leopold Kronecker) is a function of two variables, usually just non-negative integers. The function is 1 if the variables are equal, and 0 otherwise: \delta_ = \begin 0 &\text i \neq j, \\ 1 &\text i=j. \end or with use of Iverson brackets: \delta_ = =j, where the Kronecker delta is a piecewise function of variables and . For example, , whereas . The Kronecker delta appears naturally in many areas of mathematics, physics and engineering, as a means of compactly expressing its definition above. In linear algebra, the identity matrix has entries equal to the Kronecker delta: I_ = \delta_ where and take the values , and the inner product of vectors can be written as \mathbf\cdot\mathbf = \sum_^n a_\delta_b_ = \sum_^n a_ b_. Here the Euclidean vectors are defined as -tuples: \mathbf = (a_1, a_2, \dots, a_n) and \mathbf= (b_1, b_2, ..., b_n) and the last step is obtained by using the values of the Kronecker delta ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Darboux Coordinates
Darboux's theorem is a theorem in the mathematical field of differential geometry and more specifically differential forms, partially generalizing the Frobenius integration theorem. It is a foundational result in several fields, the chief among them being symplectic geometry. The theorem is named after Jean Gaston Darboux who established it as the solution of the Pfaff problem. One of the many consequences of the theorem is that any two symplectic manifolds of the same dimension are locally symplectomorphic to one another. That is, every 2''n''-dimensional symplectic manifold can be made to look locally like the linear symplectic space C''n'' with its canonical symplectic form. There is also an analogous consequence of the theorem as applied to contact geometry. Statement and first consequences The precise statement is as follows. Suppose that \theta is a differential 1-form on an ''n'' dimensional manifold, such that \mathrm \theta has constant rank ''p''. If : \theta \ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]