HOME
*





Permeability Of Soils
A number of factors affect the permeability of soils, from particle size, impurities in the water, void ratio, the degree of saturation, and adsorbed water, to entrapped air and organic material. Background Soil aeration maintains oxygen levels in the plants' root zone, needed for microbial and root respiration, and important to plant growth. Additionally, oxygen levels regulate soil temperatures and play a role in some chemical processes that support the oxidation of elements like Mn2+ and Fe2+ that can be toxic. Determination of the permeability coefficient #Laboratory experiments: ##Constant Head Permeability Test, ## Low-level permeability test, ##Horizontal permeability test. # Field experiments: ##Free aquifer, ##Pressured aquifer. Composition There is great variability in the composition of soil air as plants consume gases and microbial processes release others. Soil air is relatively moist compared with atmospheric air, and CO2 concentrations tend to be higher, wh ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Void Ratio
The void ratio of a mixture is the ratio of the volume of voids to volume of solids. It is a dimensionless quantity in materials science, and is closely related to porosity as follows: :e = \frac = \frac = \frac and :\phi = \frac = \frac = \frac where e is void ratio, \phi is porosity, ''VV'' is the volume of void-space (such as fluids), ''VS'' is the volume of solids, and ''V''''T'' is the total or bulk volume. This figure is relevant in composites, in mining (particular with regard to the properties of tailings), and in soil science. In geotechnical engineering, it is considered one of the state variables of soils and represented by the symbol ''e''. Note that in geotechnical engineering, the symbol \phi usually represents the angle of shearing resistance, a shear strength (soil) parameter. Because of this, the equation is usually rewritten using n for porosity: :e = \frac = \frac = \frac and :n = \frac = \frac = \frac where e is void ratio, n is porosity, ''VV'' is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Soil
Soil, also commonly referred to as earth or dirt Dirt is an unclean matter, especially when in contact with a person's clothes, skin, or possessions. In such cases, they are said to become dirty. Common types of dirt include: * Debris: scattered pieces of waste or remains * Dust: a gener ..., is a mixture of organic matter, minerals, gases, liquids, and organisms that together support life. Some scientific definitions distinguish ''dirt'' from ''soil'' by restricting the former term specifically to displaced soil. Soil consists of a solid phase of minerals and organic matter (the soil matrix), as well as a Porosity, porous phase that holds Soil gas, gases (the soil atmosphere) and water (the soil solution). Accordingly, soil is a three-state of matter, state system of solids, liquids, and gases. Soil is a product of several factors: the influence of climate, terrain, relief (elevation, orientation, and slope of terrain), organisms, and the soil's parent materials (ori ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Soil Science
Soil science is the study of soil as a natural resource on the surface of the Earth including soil formation, classification and mapping; physical, chemical, biological, and fertility properties of soils; and these properties in relation to the use and management of soils.Jackson, J. A. (1997). Glossary of Geology (4. ed.). Alexandria, Virginia: American Geological Institute. p 604. Sometimes terms which refer to branches of soil science, such as pedology (formation, chemistry, morphology, and classification of soil) and edaphology (how soils interact with living things, especially plants), are used as if synonymous with soil science. The diversity of names associated with this discipline is related to the various associations concerned. Indeed, engineers, agronomists, chemists, geologists, physical geographers, ecologists, biologists, microbiologists, silviculturists, sanitarians, archaeologists, and specialists in regional planning, all contribute to further knowled ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Soil Mechanics
Soil mechanics is a branch of soil physics and applied mechanics that describes the behavior of soils. It differs from fluid mechanics and solid mechanics in the sense that soils consist of a heterogeneous mixture of fluids (usually air and water) and particles (usually clay, silt, sand, and gravel) but soil may also contain organic solids and other matter.Mitchell, J.K., and Soga, K. (2005) Fundamentals of soil behavior, Third edition, John Wiley and Sons, Inc., .Powrie, W., Spon Press, 2004, ''Soil Mechanics – 2nd ed'' A Guide to Soil Mechanics, Bolton, Malcolm, Macmillan Press, 1979. Along with rock mechanics, soil mechanics provides the theoretical basis for analysis in geotechnical engineering, a subdiscipline of civil engineering, and engineering geology, a subdiscipline of geology. Soil mechanics is used to analyze the deformations of and flow of fluids within natural and man-made structures that are supported on or made of soil, or structures that are buried in soils. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Soil
Soil, also commonly referred to as earth or dirt Dirt is an unclean matter, especially when in contact with a person's clothes, skin, or possessions. In such cases, they are said to become dirty. Common types of dirt include: * Debris: scattered pieces of waste or remains * Dust: a gener ..., is a mixture of organic matter, minerals, gases, liquids, and organisms that together support life. Some scientific definitions distinguish ''dirt'' from ''soil'' by restricting the former term specifically to displaced soil. Soil consists of a solid phase of minerals and organic matter (the soil matrix), as well as a Porosity, porous phase that holds Soil gas, gases (the soil atmosphere) and water (the soil solution). Accordingly, soil is a three-state of matter, state system of solids, liquids, and gases. Soil is a product of several factors: the influence of climate, terrain, relief (elevation, orientation, and slope of terrain), organisms, and the soil's parent materials (ori ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hydraulic Conductivity
Hydraulic conductivity, symbolically represented as (unit: m/s), is a property of porous materials, soils and rocks, that describes the ease with which a fluid (usually water) can move through the pore space, or fractures network. It depends on the intrinsic permeability (, unit: m) of the material, the degree of saturation, and on the density and viscosity of the fluid. Saturated hydraulic conductivity, , describes water movement through saturated media. By definition, hydraulic conductivity is the ratio of volume flux to hydraulic gradient yielding a quantitative measure of a saturated soil's ability to transmit water when subjected to a hydraulic gradient. Methods of determination There are two broad categories of determining hydraulic conductivity: *''Empirical'' approach by which the hydraulic conductivity is correlated to soil properties like pore size and particle size (grain size) distributions, and soil texture *''Experimental'' approach by which the hydraulic condu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Casagrande Device
The Atterberg limits are a basic measure of the critical water contents of a fine-grained soil: its shrinkage limit, plastic limit, and liquid limit. Depending on its water content, soil may appear in one of four states: solid, semi-solid, plastic and liquid. In each state, the consistency and behavior of soil are different, and consequently so are its engineering properties. Thus, the boundary between each state can be defined based on a change in the soil's behavior. The Atterberg limits can be used to distinguish between silt and clay and to distinguish between different types of silts and clays. The water content at which soil changes from one state to the other is known as consistency limits, or Atterberg's limit. These limits were created by Albert Atterberg, a Swedish chemist and agronomist, in 1911. They were later refined by Arthur Casagrande, an Austrian-born American geotechnical engineer and a close collaborator of Karl Terzaghi (both pioneers of soil mechanics). Disti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Darcy's Law
Darcy's law is an equation that describes the flow of a fluid through a porous medium. The law was formulated by Henry Darcy based on results of experiments on the flow of water through beds of sand, forming the basis of hydrogeology, a branch of earth sciences. It is analogous to Ohm's law in electrostatics, linearly relating the volume flow rate of the fluid to the hydraulic head difference (which is often just proportional to the pressure difference) via the hydraulic conductivity. Background Darcy's law was first determined experimentally by Darcy, but has since been derived from the Navier–Stokes equations via homogenization methods. It is analogous to Fourier's law in the field of heat conduction, Ohm's law in the field of electrical networks, and Fick's law in diffusion theory. One application of Darcy's law is in the analysis of water flow through an aquifer; Darcy's law along with the equation of conservation of mass simplifies to the groundwater flow equation, one ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Allen Hazen
Allen Hazen (August 28, 1869 – July 26, 1930) was an expert in hydraulics, flood control, water purification and sewage treatment. His career extended from 1888 to 1930 and he is, perhaps, best known for his contributions to hydraulics with the Hazen-Williams equation. Hazen published some of the seminal works on sedimentation and filtration. He was President of the New England Water Works Association and Vice President of the American Society of Civil Engineers. Early life and education Hazen was born in 1869 on his family farm located near the Connecticut River close to the small town of Norwich, Vermont. He attended the New Hampshire College of Agriculture and Mechanical Arts (which was affiliated with Dartmouth College) and graduated with a Bachelor of Science degree at 15 years of age.Brown, Edward S. (1995). “The Hanover Water Works Company: One Hundred Years of Service.” ''Dartmouth College Library Bulletin.'' April/ref>Hall, Ellen L. “Hydraulics in the Golden A ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Adsorbed
Adsorption is the adhesion of atoms, ions or molecules from a gas, liquid or dissolved solid to a surface. This process creates a film of the ''adsorbate'' on the surface of the ''adsorbent''. This process differs from absorption, in which a fluid (the ''absorbate'') is dissolved by or permeates a liquid or solid (the ''absorbent''). Adsorption is a ''surface phenomenon'', while absorption involves the whole volume of the material, although adsorption does often precede absorption. The term ''sorption'' encompasses both processes, while '' desorption'' is the reverse of it. Like surface tension, adsorption is a consequence of surface energy. In a bulk material, all the bonding requirements (be they ionic, covalent or metallic) of the constituent atoms of the material are fulfilled by other atoms in the material. However, atoms on the surface of the adsorbent are not wholly surrounded by other adsorbent atoms and therefore can attract adsorbates. The exact nature of the b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]